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INTRODUCTION 
Listeria monocytogenes is an important foodborne 
pathogen not because it causes large numbers of 
symptomatic cases but because of its relatively high 
case–fatality rate. About 94% of listeriosis cases are 
hospitalized and about 16% die. Despite the 
widespread occurrence of L. monocytogenes in the 
environment, relatively few exposed people become ill. 
Average annual incidence in the U.S. is estimated to be 
1,591 cases. This estimate is based on the actual 
number of cases identified in a year multiplied by 
factors to correct for underreporting and under-
diagnosis (222). Some outbreaks of listeriosis resemble 
other foodborne illness, with symptoms of gastro-
enteritis and fever occurring after a median incubation 
period of 24 hours. Listeria concentrations in 
implicated food may be quite high (104–109cfu/g), and 
cases often do not have well-established risk factors 
(78;198). In other outbreaks, most victims are elderly, 
immunocompromised, or pregnant and Listeria is 
invasive, causing bacteremia, meningitis, or illness or 
death in a fetus or newborn infant. In these cases, 
median incubation periods are 2, 9, and 27.5 days, 
respectively (94). In one case associated with the 2011 
cantaloupe outbreak, an 88-year-old woman lost vision 
in one eye due to invasive listeriosis (112). 
 Although the incidence of cases of L. mono-
cytogenes per 100,000 population at FoodNet sites 
declined significantly since the baseline years of 1996–
1998 (when it ranged from 0.43 to 0.53), there has been 
little progress during the past 10 years (2002–2011), 
when incidence in the U.S. fluctuated between 0.26 and 
0.32, with an incidence of 0.28 in 2011. Preliminary 
data for 2012 indicate an incidence of 0.25. We have 
not yet reached the Healthy People 2010 goal for 
listeriosis of 0.24 or the 2020 goal of 0.20 (37). 
 Listeriosis appears to be primarily a foodborne 
infection and is particularly a problem on foods that are 
not cooked just prior to consumption, including ready-
to-eat (RTE) meats, soft cheeses, and unpasteurized 
dairy products, as well as sprouts, salad vegetables, and 
fruit. Thermal processing of milk and meat will destroy 
L. monocytogenes but post-processing contamination 
does occur. Because this pathogen grows during 
refrigeration, simply keeping foods cold does not 
ensure their safety. 
 L. monocytogenes that contaminates foods may 
originate in soils from farms and pastures (147;245), in 
slaughtering facilities (20), in food processing plants 
(16), and in slicers and other equipment in delicates-
sens (107). Elimination of Listeria from many environ-
mental sources can be challenging because of the 
resistant, persistent biofilms formed by these pathogens 
(50). 

 Several high-profile outbreaks, with high fatality 
rates, in the 1980s were attributed to cole slaw, milk, 
and Mexican-style cheese. In the 1990s, there were 
several outbreaks and recalls of meat products due to 
the presence of this pathogen. RTE deli meats were 
identified as vehicles of infection in 31% of the 
outbreaks (1998–2011) having known etiology listed 
by CDC, with dairy products accounting for another 
41.4%. However, only one of the outbreaks tabulated 
by CDC occurring after 2006 was associated with meat 
(36). More recent outbreaks (2010–2012) in the      
U.S. and other countries have been attributed to soft 
cheese in Australia (242), imported ricotta cheese in 
the U.S. (35), hog head cheese (an RTE meat) in 
Louisiana (32), packaged sliced ham in Switzerland 
(111), chopped celery in Texas (252), and cantaloupe 
in the U.S. (34). 

HUMAN ILLNESS 
Outbreaks and Cases  
Older adults (>60 years), pregnant women and their 
fetuses and newborn infants, and other persons with 
reduced immune function are particularly at risk for 
invasive listeriosis. According to the Listeria Initiative 
surveillance system, 71% of the 590 invasive cases 
reported in the U.S. in 2011 occurred in the elderly and 
9.7% of cases were pregnant women. At least 74% of 
nonpregnant cases aged <65 years were immuno-
compromised. Compared to listeriosis incidence in      
the general population (0.28/100,000), incidence rates 
for adults ≥ 65 years, pregnant women, and pregnant 
Hispanic women were 4 times, 10 times, and 24 times 
higher, respectively. Overall case–fatality rate was 
20.5% (39;40). FoodNet Surveillance data for 2011 (a 
subset of U.S. data) indicated a case–fatality rate of 
19.3% for listeriosis as compared to only 0.37% for 
reported cases of salmonellosis. Preliminary data for 
2012 indicate case–fatality rates of 10.74 and 0.42 for 
Listeria and Salmonella, respectively (37). 
 Surveillance data on foodborne disease from the 
EU indicated that there were 1,476 confirmed cases of 
listeriosis in 2011, a decline of 7.8% from the previous 
year. Overall in the EU, reported incidence of 
listeriosis was 0.32 cases/100,000. However, there was 
significant variation among individual countries, from 
0.88 in Denmark and 0.80 in Finland to 0.31 in Austria 
and 0.26 in the U.K. Overall case–fatality rate was 
12.7% for reports indicating this information (63). 
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Data from other countries indicate: 
• A total of 93 cases of listeriosis reported in Australia 

in 2012. This translates to an incidence rate of 0.41 
(8) 

• A total of 132 cases of listeriosis reported in 2011 in 
Canada (0.38/100,000) (8)  

• A total of 26 cases in New Zealand in 2011 
(0.6/100,000) (141) 

Surveillance data on prevalence of human listeriosis in 
many Asian countries and in less developed countries 
are not readily available and may be reported only in 
national languages. A small number of cases have been 
reported, for example, in Singapore (126) and India 
(12), and Listeria has been detected in foods in China 
(233) and Africa (174;183). 

Economic Costs 
A recent analysis of health costs of foodborne 
infections estimated that the average cost of a case of 
listeriosis using a basic cost-of-illness model was 
$1,272,279 (in 2010 U.S. dollars). The estimate from 
this basic model includes costs for medical care (2008 
estimates for care), productivity losses, and mortality 
and is likely an underestimate for actual costs in 2013. 
With an estimated average annual number of cases of 
1,591, this cost estimate would total $2.025 billion, 
annually. Estimated average health costs for illness 
caused by some other pathogens, including 
nontyphoidal Salmonella and norovirus, are much 
lower: $4,312/case and $530/case, respectively. But 
total estimated annual costs are higher for these 
pathogens because they each cause >1,000,000 
cases/year (224). 

Important Species and Strains of Listeria 
Several different species of Listeria have been 
described and have been detected in soil and water 
samples (220), on foods, including RTE fish products 
(132), and in human fecal samples (225). L. mono-
cytogenes, however, is the pathogen of most concern 
for human illness. There are four evolutionary lineages 
of L. monocytogenes, of which III and IV are 
uncommon and primarily isolated from animals. 
Lineage II includes serotype 1/2a and 1/2c, which are 
widespread in the natural environment, including 
foods, and have caused human outbreaks. Lineage II 
strains often have many plasmids conferring resistance 
to metals, bacteriocins, and other antimicrobial 
substances, but some strains have low virulence for 
humans. Lineage I strains include serotypes 4b and 
1/2b and are associated with most human listeriosis 
outbreaks (188). A comparison of 300 isolates from 
around the world found that there were a few frequent 
clones (4b, 1/2b, and 1/2c) found globally and some 

other clones that appeared to be limited to certain 
geographical areas (44). 
 Multiple serotypes of L. monocytogenes have been 
implicated in some large outbreaks of listeriosis, 
including the 2011 multistate outbreak linked to 
cantaloupe, which included serotypes 1/2a and 1/2b 
(135). Complete genome sequencing of numerous 
serotypes of L. monocytogenes revealed a highly 
similar pan-genome but also prophages, transposons, 
mobilizable islands, and hyper-variable hotspots, which 
allow evolution of cells to adapt to different niches and 
changing conditions (133). Indeed, an examination of 
33 strains of L. monocytogenes revealed differences in 
virulence and adaptation to cold (130). Strains also 
vary in their ability to form biofilms and persist in food 
processing plants (264). 

FOOD ATTRIBUTION 
Outbreak Data 
Soft cheeses, RTE meats, fresh produce, and seafood 
are commonly cited vehicles of infection for listeriosis. 
Selected outbreaks of listeriosis, illustrating this, are 
listed in Table 1. Food vehicles reported in data from 
the CDC outbreak database (1998–2011, plus two 
2012–2013 cheese outbreaks in the U.S.) are depicted 
in Figure 1. Meat (primarily RTE) and dairy products 
each account for about a third of the outbreaks. Salads 
included potato, taco, and tuna; produce included 
cantaloupe, celery, and sprouts. Meat and produce 
caused larger than expected shares of cases, however, 
most likely because of the wide distribution of some 
RTE meat products and of contaminated cantaloupe 
during the large 2011 outbreak. On the other hand, 
many of the cheese outbreaks were attributed to 
Mexican-style cheeses that were produced in smaller 
amounts and distributed locally, and therefore a smaller 
number of people were exposed. In other countries, 
smoked fish is an important vehicle for listeriosis. But 
the only two outbreaks in the CDC list that involved 
fish were attributed to tuna salad and sushi. 
 A study using data from U.S. outbreaks (1999–
2008) attributed foodborne listeriosis mainly to dairy 
products (30%), deli and other meats (35%), and 
complex foods (15%). Seafood and produce accounted 
for a total of 10%. Expert elicitation attributed more 
illness to deli meats (54%) and seafood (8.7%) and less 
to dairy products (23.6%) (15). 
 Another review of listeriosis outbreaks during this 
time period noted changes in characteristics of 
outbreaks from earlier to later years. While outbreaks 
caused by dairy products do not appear to be 
decreasing in frequency, there has been a marked 
decrease over time in outbreaks associated with RTE 
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meat and poultry. Other novel vehicles, such as fresh 
produce, have recently been identified as vehicles (30). 
Data on 31 outbreaks (domestic and foreign) during the 
past 5 years described in the literature (see Table 1) 
reinforce the continuing importance of cheese and the 
declining, but still significant, role of RTE meat 
products. Of these outbreaks, 20 were attributed to 
cheese; 5 to meat, most identified as RTE; 4 to 
produce; and 2 to combination foods containing fish. 

Sporadic Cases 
An important factor to consider in addressing the 
problem of listeriosis is that a majority of cases are 
sporadic, not outbreak-related. These individual cases 
may not be investigated thoroughly and we may be 
underestimating (or not even considering) some foods 
that may be important vectors for Listeria. An 
Australian investigation into factors associated with 
sporadic listeriosis found that living in a non-English-
speaking household was correlated with perinatal 
listeriosis. Among non-perinatal cases, age (>60 years), 
prior hospitalization, use of gastric acid inhibitors, and 
eating Camembert cheese were identified as risk 
factors (51). 

Surveillance of Foods 
RTE deli meats have been implicated in a number of 
listeriosis outbreaks. A risk assessment by FSIS in 
2003 indicated that deli meats accounted for about 64% 
of foodborne listeriosis (206). Data from the FSIS 
microbiological testing program for RTE meat and 
poultry products for L. monocytogenes demonstrate a 
decline in positive samples over the past 20 years, from 
4.61% in 1990 to 1.45% in 2000, and to 0.27% in 2011 
(74). 
 However, this decrease in prevalence of Listeria in 
tested meats has not resulted in a significant decrease 
in incidence of listeriosis as reported by CDC in the 
past decade (37) (see Figure 2). Part of the explanation 
for this discrepancy may be that consumers are 
purchasing more deli meats that have been sliced at 
retail facilities. Recent studies indicate that these retail-
sliced meats account for approximately 83% of the 
listeriosis cases associated with deli meat, and a high 
proportion of deaths resulted from meats that did not 
contain microbial growth inhibitors (64). Other studies 
of sliced ham, turkey, and roast beef also demonstrated 
that products without growth inhibitors and those sliced 
at retail were a greater risk for listeriosis (201;202). 
Data on Listeria in pork and pork products from a large 
number of studies all over the world are summarized in 
a recent review (10). 
 Other vehicles for listeriosis have become more 
prominent in recent years, including fresh produce and 
a continuing problem with certain dairy products. FDA 

recently issued a draft assessment of the risk for 
listeriosis from soft-ripened cheese. It was estimated 
that soft cheese made from raw milk poses 50–160 
times the risk for listeriosis as cheese made from 
pasteurized milk (73). 
 As yet there is not very good surveillance data for 
prevalence of Listeria in many foods. A very large 
market basket survey is now underway testing three 
categories of FSIS-regulated foods and 12 categories of 
food regulated by FDA (deli meats, salads containing 
meat, dried/fermented sausage, smoked seafood, raw 
milk, soft cheeses, and low-acid cut fruits). More than 
24,000 food items have been sampled so far. Some 
preliminary results have been reported (149). 
 Data gathered by the EU indicate that fermented 
sausages, soft/semi-soft cheeses, and fishery products 
had higher rates of non-compliance with Listeria 
regulations than other RTE meats and other foods (63). 
A 2010–2011 survey of 3,053 packages of smoked or 
gravad fish, 3,530 heat-treated meat products, and 
3,452 soft or semi-soft cheeses from 27 European 
countries detected L. monocytogenes in 10.3% of fish, 
2.07% of meat, and 0.47% of cheese. Contamination 
levels were generally low but at least one sample in 
each category exceeded 100 cfu/g at the end of shelf 
life (66). Results of other recent surveillance studies 
are presented in Table 2. 

FOOD CONTAMINATION 
Contamination Pathways 
Listeria is widely present in the environment, and there 
are many potential pathways by which food may be 
contaminated. Contaminated soil or water may 
introduce Listeria to produce in the field. Food-
producing animals may carry Listeria, often without 
symptoms, and be a source of contamination for milk 
and meat. Biofilms containing Listeria in food 
production and processing facilities may constitute a 
persistent, ongoing, sometimes sporadic source of 
bacteria (241). Employees handling food may also 
spread Listeria and facilitate cross-contamination in 
production facilities and food preparation areas. A 
great deal has already been written on this subject 
(215) and the sections below will describe information 
gathered from recent outbreaks or unusual/unexpected 
routes of contamination. 
 Condensate in food processing plants has been 
suspected as a possible source of pathogenic bacteria 
contaminating food during production. However, 
recent analyses of 2,281 condensation samples 
(overhead pipes, dripping pans) from harvest, 
fabrication, and RTE meat processing environments 
found low levels of aerobic bacteria, coliforms, yeast, 
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and molds. Listeria spp. was detected in only two 
samples (25). 
 A study to determine the extent of attachment of 
L. monocytogenes to six different types of conveyer 
belts found that the bacteria adhered best to the four 
plastic belts and least to the two stainless steel belts. 
This suggests that the plastic belts pose a greater risk 
for cross-contamination (267). 
 Several outbreaks of listeriosis have been traced to 
machinery in food processing plants, raising the 
question as to whether L. monocytogenes can survive 
or grow in the lubricants used in this equipment. Tests 
with eight artificially inoculated H1 lubricants (seven 
greases, one oil) found that there was no growth, and 
viable counts decreased by >99.9% within 7 days in all 
materials (275). 
 Floor drains in poultry processing plants and other 
plants can be colonized by L. monocytogenes and the 
biofilms can make the drains difficult to clean. An 
experiment to determine whether a 2-second spray of 
water into a contaminated drain would result in 
aerosolization of L. innocua demonstrated that cells 
could be detected on the floor 4 m away from the drain 
and on walls 2.4 m above the floor and 4 m from the 
drain (16). Using a similar protocol (2-second spray 
into a contaminated drain) resulted in low level 
contamination of raw chicken fillets left on a table 
2.4 m from the drain (17). 
 Several models have been developed to predict the 
importance of different pathways for contamination of 
RTE foods. Some recent models include: (a) surface 
transfer of L. monocytogenes during slicing of salami 
(234); (b) estimation of transfer of L. monocytogenes 
during slicing and removal during sanitation (106); 
(c) public health impact of cross-contamination of RTE 
meats with L. monocytogenes in retail environments 
(200); and (d) risk assessment modeling of L. mono-
cytogenes contamination of RTE meats (79). 
 L. monocytogenes can produce extracellular 
polymers that aid in attaching to a variety of surfaces 
and protect the cells from cleaning and sanitizing 
agents. Once a biofilm is established, it can serve as an 
ongoing source of contamination. L. monocytogenes 
strains vary in their ability to form biofilms (47;76). 
Of  29 isolates of L. monocytogenes isolated from 
bovine carcasses and beef processing facilities, 4 were 
determined to have a strong ability for adhesion, 
8  were weak, and the others had a moderate ability      
to adhere to surfaces (80). One persistent strain of 
L. monocytogenes isolated from a cold-smoked fish 
processing plant in Japan was found to produce greater 
amounts of biofilm with more extra-cellular 
polysaccharide than a transient strain from the same 
facility. Cells in the biofilm were about 150 times as 
resistant to benzalkonium chloride as cells of the 

transient strain (178). Persistent strains also appear to 
recover better than other strains after damage by some 
antimicrobials, such as chitosan (187). 
 Important aspects of biofilms were discussed in 
recent reviews. Effects of environmental factors on 
biofilm formation, including temperature, acidity, 
sodium chloride, and other compounds present in 
foods, were explained and methods for studying 
biofilm formation were described. Strategies for 
prevention and control of biofilms were evaluated 
(50;58;241). 

Animals, abattoirs, and raw meat processing 
Relatively few studies have surveyed the prevalence of 
Listeria in live poultry, cattle, and pigs. Reported 
incidence of Listeria in fecal samples is generally 
much lower than reports on some other pathogens such 
as Salmonella, Campylobacter, and E. coli. 
 Poultry. A recent survey of pasture-raised broilers 
in Tennessee found 7 cecal samples from 399 birds 
tested positive for L. monocytogenes. This bacterium 
was also found in some soil and grass samples from the 
environment where they lived. No data are available on 
Listeria in poultry raised in large, conventional systems 
in the U.S. but some data from other countries indicate 
a low level of contamination in live birds (164). 
 Approximately 38% of neck skin samples from 
chickens slaughtered in four processing plants in 
northern Greece tested positive for L. monocytogenes 
(216). However, sampling for Listeria on chickens 
coming into U.S. slaughter plants (feathered carcasses, 
pre-scald) found that only 2.5% carried L. mono-
cytogenes (18). 
 No Listeria were present in a commercial chicken 
further-processing plant when it first opened. However, 
within 4 months L. monocytogenes was detected in 
floor drains even after cleaning and sanitizing. 
Evidence indicated that the source of Listeria was raw 
product (deboned chicken) entering the plant (19). 
Investigations into L. monocytogenes contamination on 
mechanically deboned chicken in Italy determined that 
the source of contamination was the drying–cooling 
tunnel the birds passed through after slaughter and 
before deboning. Small feathers from carcasses 
collected on evaporative cooling pads in the tunnel and 
provided a niche for Listeria survival and growth (20). 
 A large survey for Listeria in Thai factories 
producing frozen cooked chicken detected Listeria spp. 
in 3.2% and L. monocytogenes in only 1% of 12,833 
meat and environmental samples. The most common 
surfaces contaminated were the freezer drain, the metal 
detector conveyer belt, and the liquid nitrogen chiller 
exhaust pipe (121). 
 Cattle, sheep, goats. L. monocytogenes is also 
present in feces of ruminants and may be secreted     
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into milk if a cow (166) or goat or ewe (108) has 
mastitis. A trace-back investigation of contamination      
of raw ewe’s-milk cheese in Austria found that ewes 
with mastitis were shedding an average of 3 × 104 cfu 
L. monocytogenes/ml of milk (228). 
 A survey of L. monocytogenes contamination in 
Chinese beef processing plants detected these bacteria 
in 26.4% of samples, with hides being most frequently 
contaminated (284). L. monocytogenes and other 
foodborne pathogens were readily transferred from 
inoculated beef fillets passed through a mincing 
machine to all six non-inoculated fillets passed 
sequentially through the same machine (193). 
 Pigs. Data on Listeria in pigs on the farm from 
several studies in Europe and the U.S. are summarized 
in a recent review. Prevalence in rectal swabs is <4% in 
most studies but some environmental samples from 
pens revealed more widespread contamination (10). 
However, two studies from Italy tracing Listeria from 
pigs through production of ham and sausage found that 
strains of Listeria found on pig carcasses were different 
from those detected in meat later in the manufacturing 
process (161;204). 
 Other animals. A survey of ducks on commercial 
farms in Malaysia found that 2.8% were positive for 
L. monocytogenes (1). 

Deli meats 
Although RTE meats have been previously cooked, 
they may be recontaminated with Listeria during 
subsequent handling, particularly during slicing and 
packaging. Meats sliced in a retail establishment are 
considered a greater risk than those sliced and 
packaged in a processing facility. However, some 
outbreaks have been traced to contamination at 
processing plants. Sources of contamination in 
factories producing fermented sausage in Italy (161) 
and Parma ham (204) appeared to be within the 
processing plants, and frequently the same strains 
would be detected over a long period of time. 
 Because deli meats have been a recognized vehicle 
for listeriosis for a number of years, numerous papers 
report on investigations into cross-contamination and 
reservoirs where L. monocytogenes may persist. Slicers 
have been a major focus of contamination studies as 
Listeria have been shown to be transferred from slicers 
to a variety of meats (142). Swab samples from slicers 
in restaurants were found to harbor a variety of 
microbes: pseudomonads were the dominant strains, 
and enterobacteriaceae and lactic acid bacteria were 
also commonly present. The blade guard of the slicer 
had the greatest diversity of bacterial species (128). 
Meat residues that accumulated in slicing machines at a 
processing plant were identified as the likely source of 
bacteria in the large 2008 Canadian outbreak of 

listeriosis (22). Cooked ham was the vehicle for a 2011 
Swiss outbreak but contamination did not occur in the 
plant producing the ham. This company outsourced 
slicing and packaging to another establishment, and 
this is where the outbreak strain was detected (111). 
Mathematical models have been developed to describe 
transfer of listeriae from slicers to meat (106;236). 
 Prevalence of L. monocytogenes in retail 
environments varies, and it appears that some retail 
delis are more widely contaminated than others. There 
is more handling of foods in these stores as products 
are sliced, moved around in display cases, and weighed 
as consumers purchase them. Temperature control may 
not be as strict. In one study, listeriae were detected 
mainly on nonfood contact surfaces, such as floors, 
sinks, and the dairy case; in another study, listeriae 
were detected on a greater variety of surfaces and it 
was noted that the same strain of L. monocytogenes 
persisted in some establishments for over a year. 
Contamination problems were greater in larger 
establishments and in stores with a poor inspection 
history (107;221). 
 Listeria contaminating one area of a deli can be 
transferred to other surfaces and foods. A structured 
elicitation, involving 41 experts from the retail food 
industry and state regulatory agencies, identified hands 
and gloves as major potential sources of contamination. 
However, there is not much data documenting transfer 
of bacteria from these sources. Other sites that may be 
involved in contamination pathways in retail deli stores 
include cutting boards, scales, deli preparation areas, 
floor drains, and knife racks (104). A recent study 
tracked cross-contamination pathways through a mock 
retail deli market using GloGerm, a product that glows 
under UV light. In separate experiments, six sites (meat 
chub, slicer blade, preparation table, employee’s 
gloves, employee’s hands, and floor drains) were 
inoculated with 20 ml GloGerm. After about 10 min of 
work doing standardized deli tasks, several locations 
were found to be contaminated, including deli case 
door handle, deli case shelf, and prep table sink. 
Contamination spread from all source sites (except 
floor drains) but contamination was not consistent 
across all trials (153). Another study examined cross-
contamination occurring when 21 participants sliced 
deli meats, one of which was coated with a fluorescent 
compound. Elevated levels of the fluorescent 
compound were consistently found on gloves, the 
slicer’s meat grip, and the outside wall of the carriage 
tray. There was variability in the extent of cross-
contamination among the participants, which may also 
be true for employees in a deli (88). 

Dairy products 
Investigations at a dairy farm that recently had positive 
tests for L. monocytogenes in bulk tank milk revealed 
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the presence of this bacterium in 66% of milk filters, 
16% of bulk tank milk samples, and 6% of water 
samples. It appeared that there was a common source 
of contamination and the most likely sources were 
believed to be an asymptomatic cow shedding 
L. monocytogenes or some site within the milking 
machine where L. monocytogenes could survive and 
grow (192). 
 A 2009–2010 outbreak of listeriosis in Europe was 
traced to an acid curd cheese called quargel. 
Examination of the recalled lots of cheese found 
L. monocytogenes levels of 102 to 3 × 107 cfu/g of 
cheese in 14 positive lots of red smear cheese. Other 
lots of mold-ripened cheese, manufactured during the 
same time period, tested negative for Listeria. 
Therefore, it appeared that the red smear, usually a 
culture of Brevibacterium linens, was the source of 
contamination (227). 
 A widespread, cheese-associated listeriosis 
outbreak in Canada in 2008 was traced to a single 
cheese-producing plant. Investigations at the plant 
indicated that the pasteurization process was adequate 
and samples from the dairy herd providing milk all 
tested negative. However, analyses of environmental 
samples from the plant detected the outbreak strain in 
five different locations. Since the soft washed-rind 
cheese was the only type associated with the outbreak, 
it appeared that the brine solution, used to frequently 
wash the cheeses during maturation, was contaminated 
with L. monocytogenes (84). 
 As noted in other processing plants, floor drains 
can be a significant source of contamination in cheese 
factories. A survey of 34 cheese factories in Italy      
found 19 were contaminated with Listeria spp. and 
7  contained L. monocytogenes. L. monocytogenes was 
detected in 18.8% of floor drains, 4.9% of food contact 
surfaces, and 2.4% of cheese samples (194). 

Seafood 
A survey of facilities producing ready-to-eat foods in 
Canada detected L. monocytogenes in food from 5 of 
12 plants processing fish but not in meat and dairy 
products. However, this bacterium was present in the 
environment of all types of plants (131). Contamina-
tion pathways in a cold-smoked salmon plant in Italy 
were investigated over a period of 6 years. Although L. 
monocytogenes was present on some of the incoming 
fish, PFGE analysis of Listeria strains from fish and 
the plant environment demonstrated that the contami-
nants detected on the final smoked fish products were 
L. monocytogenes strains that had persisted in the plant 
environment for several years (59). 
 Sources of L. monocytogenes contaminating blue 
crabs in processing plants have also been investigated. 
L. monocytogenes was isolated from 4.5% of raw 

crabs, 0.2% of cooked crabs, and 2.1% of environ-
mental samples. The receiving dock and raw crab 
coolers were the most frequently contaminated sites 
(191). 

Eggs 
Very little information has been published on 
contamination of eggs with L. monocytogenes. Eggs 
have not generally been associated with listeriosis, and 
contamination levels appear to be low according to a 
survey of commercial eggs in Mexico (97). A recent 
investigation of five egg-breaking plants in France 
found L. monocytogenes on 2% of egg shells, 8% of 
environmental samples, 8.5% of raw egg samples, and 
0% of pasteurized eggs. A much higher prevalence was 
observed for Listeria spp., and 1.8% of pasteurized 
eggs tested positive for Listeria spp. (211). 

Produce 
An assessment by FDA cited several factors as 
contributing to contamination of cantaloupe in the 2011 
multi-state outbreak. Low levels of L. monocytogenes 
in the field were described as the likely ultimate source. 
Conditions in the packing facility allowed easy 
dispersal and growth of bacteria. There was water 
pooling on the floor and neither the floor nor the 
packing equipment was easily cleanable. No pre-
cooling step was used to remove field heat from the 
fruit before cold storage (72). 
 Sanitation issues were identified as contributing to 
contamination of celery in the 2010 Texas outbreak. 
Inspectors found a condensation leak over a food 
preparation area, soil on a food preparation table, and 
hand washing issues in the plant that produced the 
chopped celery and other produce (252). 

Survival and Growth in Foods 
Listeria is well known for its ability to grow in cold 
temperatures. It can also adapt to changes in acidity 
and high salt concentrations. Under stressful conditions 
L. monocytogenes can form long filaments, which may 
result in an underestimation of risk in certain foods 
(262). 
 A risk assessment tool has been developed to aid 
in determining risk for significant Listeria levels in 
cold foods that are transported without adequate 
temperature control. Data from ComBase and FDA 
were used to assess risks posed by holding cold foods 
at warmer temperatures for certain periods of time in 
supermarkets, delis, restaurants, and during transport to 
stores to homes (223). 
 Numerous investigations, over many years, have 
recorded data on growth and survival of Listeria spp. in 
a variety of foods. The following sections will report 
results of recent research in the past 4–5 years. 
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Meat 
Raw meat is usually not considered a risky food for 
listeriosis because cooking will kill these bacterial 
pathogens. However, low populations of Listeria could 
increase during refrigerated storage, particularly if 
there were some periods of temperature abuse, and 
some bacterial cells in a highly contaminated piece of 
meat could survive light cooking and grow during 
further refrigerated storage or be a source of cross-
contamination in a kitchen. Data on growth of Listeria 
on raw chicken (203) and pork (55;281) at different 
temperatures have been used to construct models that 
may be used for risk assessment. 
 Refrigerated storage periods of up to 6 months 
prior to slicing did not affect growth of L. mono-
cytogenes on slices of cook-in-bag turkey and ham 
formulated with lactate/diacetate. After slicing, meat 
was inoculated with approximately 1.45 log CFU/cm2 
of bacteria, vacuum packaged, and stored at 4°C for 
13 weeks. Cell counts increased to 1.5–2.3 (ham) and 
2.3–2.5 (turkey) log CFU/cm2 (87). 
 Goetta, an uncured sausage-like meat product, 
does support the growth of L. monocytogenes at both 
12 and 4°C. Cooking for 5 min/side resulted in a 5-log 
reduction in Listeria populations (199). 
 Cured meats such as ham, bacon, and frankfurters 
contain several added ingredients that restrict microbial 
growth, including salt, lactate, and nitrate/nitrite. 
Natural and organic foods do not contain added nitrite 
and some other antimicrobials, and L. monocytogenes 
has been reported to grow better in these products. 
Moisture levels, protein content, and salt concen-
trations also affect growth of this pathogen (250). 
Thirty days of drying of a fermented sausage, chourico 
de vinho, reduced water activity sufficiently to destroy 
all pathogens (61). 
 RTE turkey deli meat does support the growth         
of L. monocytogenes. A recent analysis of the 
transcriptome produced during this growth indicates 
that transcription of genes coding for virulence factors 
was not significantly changed during growth on turkey, 
but some genes important for adaptation to 
environmental conditions were upregulated (9). This 
may explain the observation that L. monocytogenes 
grown on deli turkey is significantly more resistant to 
synthetic gastric fluid than cells grown on culture 
media (197). 
 Experiments to measure listerial growth on 
different deli meats during simulated home storage 
(4, 7, or 10°C) found, as expected, that growth was 
greater at higher temperatures. Lactate and/or diacetate 
added to some meats totally inhibited growth of 
L. monocytogenes in roast beef, but only partially 
inhibited growth in turkey and ham (282). 

Cheese 
Queso fresco, a Mexican-style cheese, has been 
identified as the food vehicle for listeriosis in 
numerous outbreaks. Data on growth of L. mono-
cytogenes inoculated onto slices of this cheese or into 
curd before forming cheese blocks demonstrated that 
this pathogen grew faster at 10°C than at 4°C, but after 
20 days of storage at these temperatures populations 
reached 7.8 log regardless of temperature or inocula-
tion method (137). Several studies reported develop-
ment and validation of predictive models for survival 
or growth in different types of cheese: (a) process 
cheese at 4, 12, and 22°C (57); (b) Camembert and 
blue cheeses (146); and (c) goat’s milk and production 
of goat’s milk cheese (4). 

Fish 
Several outbreaks of listeriosis have been traced to 
cold-smoked fish, and recent research has investigated 
the importance of freeze–thawing and type of cure (wet 
or dry) on growth of L. monocytogenes in smoked fish. 
Wet-cured salmon had a higher pH and water activity 
than dry-cured fish and this resulted in a lag phase of 
<1 day after inoculation for wet-cured compared to a 
lag of 3.7–11.2 days for dry-cured fish. Freeze–
thawing did not significantly affect growth of other 
endogenous bacteria on salmon but did allow more 
rapid growth of L. monocytogenes. These processing 
steps will affect the safety of cold-smoked salmon 
(120). 

Fresh produce and salads 
Little data is available from experimental studies on 
growth of L. monocytogenes on many kinds of fresh 
produce. Categories of produce appear to differ in      
the growth rates and population densities of Listeria 
that they will support. But there is not enough 
information to make reliable estimates in many cases 
(105). Some factors identified as affecting the growth 
of L. monocytogenes on greens and salads include: 
(a) presence of other bacteria (natural flora) (155;185); 
(b) acidity of dressing, for example in mayonnaise 
salads (2); and (c) temperature (219;254). L. mono-
cytogenes populations inoculated onto fresh-cut celery 
decreased by about 1 log during 7 days at 4°C, 
increased by about 0.5 log during 7 days at 12°C, and 
increased by about 0.3 log during 2 days at 22°C (266). 
Models have been developed to describe growth of 
Listeria under different conditions on lettuce (218) and 
cabbage (273). 
 Investigations into the growth of Listeria on 
cantaloupe were designed to understand the deadly 
2011 listeriosis outbreak. Whole cantaloupes were 
inoculated on the surface with a suspension of L. 
monocytogenes and then pieces were cut and incubated 
at 5, 10, and 20°C for up to 3 days. Enrichment was 
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required to detect Listeria on fresh-cut pieces but 
significant growth was observed during incubation at 
the higher temperatures (258). In another study fresh-
cut cantaloupe pieces were inoculated with three main 
serotypes of L. monocytogenes and incubated at 
different temperatures (4 to 43°C). No differences were 
observed in growth of the three serotypes, and experi-
mental data were used to develop kinetic models of 
growth for use in estimating shelf-life of cut fruit and 
conducting risk assessments (68). 

Other foods 
Hummus (pH 4.50–4.52) proved to be a poor substrate 
for growth of L. monocytogenes, although ≥ 1 log cfu/g 
of the initial concentration of 1.86–2.23 log cfu/g 
survived for 27 days at 4 and 10°C. Listeria popula-
tions were significantly lower in hummus without 
added sodium (2). 
 Fresh pasta sauces, one containing cheese (pH 
5.68) and the other mushrooms (pH 5.25), were 
inoculated with L. monocytogenes and stored for 31 
days (shelf life of this product) at 4 and 8°C. Although 
Listeria survived in the sauces, there was little or no 
growth, presumably because of the presence of lactic 
acid bacteria which did grow, competing with Listeria 
and further reducing the pH (95). 
 Fermented black olives (pH 3.95; NaCl 6.02%), 
inoculated with several strains of L. monocytogenes 
and incubated aerobically, did not support growth of 
this pathogen but some cells did survive for up to 
15 days at both 4 and 20°C. Neither Salmonella nor 
E. coli were viable after 1 day under the same 
conditions (96). 
 Walnut kernels were inoculated with 3–10 log cfu 
of L. monocytogenes/g, dried, and then stored at 23°C 
for 3 weeks to a year. Listeria survived better during 
storage than E. coli and Salmonella, and the calculated 
decline was 1.1–1.3 log cfu/month (23). 
 Although listeriosis has not been associated with 
fresh mushrooms, the cool, moist environments in 
which mushrooms are grown could potentially support 
the growth of Listeria spp. However, a survey of five 
production zones in a mushroom production facility 
detected L. monocytogenes in just 1.6% of samples and 
these were all from phase 1, the raw material 
composting area (268). 

STRATEGIES FOR CONTROLLING 
LISTERIA 
Numerous interventions have been instituted by 
manufacturers of RTE meat and poultry products to 
control L. monocytogenes. Preventing contamination 
by using effective cleaning and sanitation procedures, 

equipment that is more easily cleaned and has fewer 
niches where pathogens might survive and grow, and 
better designed plant facilities are important first steps. 
“Seek and destroy” monitoring programs are used to 
detect growth niches of bacteria in a production facility 
and determine effective procedures for dealing with 
these harborage sites (70). It has been estimated that 
these strategies have significantly decreased the 
likelihood of recontamination after thermal processing 
in the past 10 years (165). Safety has been further 
enhanced by formulating some RTE meats with salt, 
nitrite, lactate/diacetate mixtures, and some other 
antimicrobial compounds to inhibit growth of Listeria 
(89;90;145;165;244). 
 Efficacy of methods for decontamination of fresh 
produce was recently reviewed (92). Other recent 
papers describing strategies for controlling Listeria are 
summarized below. 

Human Factors—Education, Monitoring 
Current online food safety training materials often fail 
to address concerns specific to workers at delis. 
Therefore, an expert consensus method was used to 
identify baseline food safety training practices that 
could be used as guidelines for food safety instructors 
for retail delis (124). As an example, interventions to 
reduce recontamination may not be as rigorous in many 
retail establishments selling RTE deli meats. One study 
reported that compliance with hand washing 
recommendations was low among employees in retail 
deli departments in Maryland and Virginia (148). Two 
recent articles discussed various aspects of food safety 
culture and employee education at retail food 
establishments. It is not enough to simply provide food 
safety information to employees. Both written 
instructions and demonstrations on the use and 
cleaning of equipment are needed (180). Managers 
should encourage safe practices and make it clear that 
food safety is a priority even when employees are very 
busy (181;246). 
 For some high-risk populations, such as pregnant 
women, the elderly, and those in hospitals or nursing 
homes, it may be prudent to avoid serving certain foods 
known to present a greater risk for foodborne illness. 
Following an outbreak of listeriosis in a hospital traced 
to tuna salad prepared on site, a survey of 54 acute-care 
hospitals in New York City found that most served 
RTE deli meats and RTE salads to patients (45). A 
survey of long-term-care facilities found that 9% 
served soft cheeses made from unpasteurized milk and 
most facilities served deli meats. However, only a few 
places reported always heating the deli meats just 
before serving them (182). 
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Physical Processes 
Heat 
In-package pasteurization of RTE meat and poultry 
products was recently reviewed, with discussions on 
time–temperature combinations and product configura-
tion in packages (109). Post-packaging thermal 
processing of fully cooked chicken breast in 60–90°C 
water was evaluated for destruction of L. innocua. 
Data were used to construct a model to aid poultry 
processors in determining appropriate thermal 
treatments (138). 
 The presence of several ingredients in a food can 
affect the heat sensitivity of L. monocytogenes. Apple 
polyphenols added to ground beef reduced heat 
resistance of L. monocytogenes. Data suggest that 
commercial and home processors of meat could add 
apple polyphenols to meat, reduce sodium chloride 
concentrations, and produce a safe product at lower 
temperatures (118). Another model was developed to 
predict inactivation of L. monocytogenes in liquid food 
products. In addition to temperature, other factors, 
including pH, sugar and sodium chloride levels, and 
temperature of growth or storage before inactivation, 
were significant variables affecting effectiveness of 
thermal treatments (265). 
 Aerated steam treatment for 300 sec reduced L. 
monocytogenes levels on mung bean and alfalfa seeds 
by more than 5 logs but did not completely inactivate 
this pathogen. This treatment did not significantly 
affect germination of mung beans but did lower the 
germination rate of alfalfa seeds by 11.9% (247). 
 A new method for cooking foods using highly 
controlled radio frequency energy was not very 
effective in inactivating L. monocytogenes in meatballs 
although it significantly reduced populations of E. coli 
and Salmonella (226). 
 Near-infrared heating for 50 sec reduced the 
number of L. monocytogenes cells on ham slices by 
3.38 log with little effect on sensory qualities. In 
comparison, convective heating required 180 sec and 
caused changes in color and texture (98). Treatment of 
cooked chicken breast meat for up to 8 min with near-
infrared heating to temperatures of 62–75°C reduced 
L. monocytogenes levels by 0.35–1.6 log/min. This was 
more effective than a hot water immersion process for 
inactivating this pathogen (110). 
 Microwave heating of foods to ensure safety has 
been reported to yield mixed results. Such is the case 
with the most recent reports monitoring L. mono-
cytogenes. While a new “smart” microwave oven 
reduced L. monocytogenes counts on catfish fillets 
within 2 min of 1250 W heating, there was noticeable 
degradation of the fillet structure (235). Microwaving 
at manufacturers’ recommended levels significantly 
inactivated L. monocytogenes on chicken breast but 

was less effective on chicken patties. Both product type 
and level of contamination affect success of this 
method (173). 
 Reheating of inoculated cooked chicken breast 
meat by microwaving, domestic oven, or stove top 
cooking reduced L. monocytogenes populations by      
2–5 log cfu/g. However, inoculated products stored in 
the refrigerator for several days had higher cell counts, 
and fairly high numbers survived reheating (75). 

Irradiation 
Irradiation doses of ≥ 1 kGy significantly reduced 
viable L. monocytogenes cells inoculated on smoked 
salmon to undetectable levels immediately after 
treatment. However, during subsequent storage of the 
salmon at 5°C for 35 days some L. monocytogenes 
cells exposed to 1 kGy gradually recovered; cells 
exposed to 2 kGy did not recover during this time 
(152). Use of a pectin–nisin film to cover RTE turkey 
during and after irradiation did significantly reduce 
proliferation of surviving L. monocytogenes during 
subsequent refrigerated storage (115). 

High pressure 
High pressure processing inactivates bacteria by 
increasing membrane permeability, generating reactive 
oxygen species, and disrupting protein–lipid inter-
actions at the cell surface. Many cells die as a result of 
this treatment but other, damaged cells may recover 
during storage at cooler temperatures. Therefore some 
research has investigated the use of antimicrobial 
compounds in conjunction with high pressure 
processing to effectively control L. monocytogenes. 
Examples include the use of essential plant oils (86), 
nisin on dry cured ham (100), KCl and K lactate as 
substitutes for NaCl in smoked dry cured ham (243), 
nitrite as the usual chemical addition and from celery 
(53;176;177), and the lactoperoxidase system on cold-
smoked salmon (169). 
 Models have been developed to describe 
inactivation of L. monocytogenes during high-pressure 
processing. Data on inactivation of L. monocytogenes 
on sliced ham at 300–800 MPa were used to construct 
models suitable for setting process criteria to ensure 
safety (101). An enhanced quasi-chemical kinetics 
model was developed to evaluate the non-linear 
inactivation kinetics of L. monocytogenes in a protein 
food system for several combinations of pressure       
(207–414 MPa) and temperature (20–50°C). This 
model has four steps to more accurately predict 
inactivation of various foods (62). 

Electrolyzed water 
Electrolyzed water was reported to reduce L. mono-
cytogenes on raw chicken by 1.5–2.3 logs following 
dipping for 10 min (208). However, it was not very 
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effective on raw fish, and L. monocytogenes continued 
to grow after treatment if the fish were stored under 
refrigeration (157). 

Ultraviolet light and pulsed light 
Ultraviolet light (UV) damages DNA in bacteria, often 
resulting in inactivation. L. monocytogenes on the 
surface of chicken frankfurters was exposed to 
different doses of pulsed UV light and the resulting 
survival curve was nonlinear. The Weibull model more 
accurately estimated inactivation of these bacteria on 
poultry than the log-linear model (122). 
 Intense pulsed light (IPL) using a broad spectrum 
white light induces damage to bacterial cell structures, 
including DNA. A comparison of the effects of UV      
and IPL on L. monocytogenes demonstrated that a      
7-log reduction could be achieved by treatment with 
376 and 455 W/m2 for 60–180 seconds whereas a 4-log 
reduction was achieved with 1200 seconds of UVC 
exposure (42). 
 Pulsed light can inactivate L. innocua in protein-
containing solutions. However, effectiveness depends 
on type and concentration of proteins (7). Some 
negative sensory effects were observed in raw fish and 
beef after treatments with 8.4 and 11.9 J/cm2 of pulsed 
light, which reduced L. monocytogenes counts by about 
1 log (102). However, treatment of a cured RTE meat 
product with 11.9 J/cm2 had little effect on sensory 
qualities while reducing L. monocytogenes by 1.5–1.8 
logs (82). 
 Pulsed light also inactivates L. innocua on several 
types of packaging materials. Effectiveness depends on 
surface roughness and surface reflectivity (210). 

Carbon dioxide 
The use of supercritical carbon dioxide to inactivate 
L. monocytogenes was evaluated using cells suspended 
in media. Depressurization rate and the ratio of cell 
mass to carbon dioxide were the most important 
variables affecting inactivation of the pathogen (240). 
L. monocytogenes inoculated on dry cured ham to a 
concentration of 107 was completely inactivated by 
supercritical carbon dioxide at 12 MPa, 50°C, for 
15 min. Less stringent conditions were effective for 
lower levels of contamination. Color and other sensory 
attributes were slightly affected by the treatment (69). 

Ozone 
In-package ozonation to a concentration of 1000 ppm 
reduced L. monocytogenes concentrations on stem scar 
areas of tomatoes by about 4 logs and on tomato 
surfaces to undetectable levels (67). 

Antimicrobial Compounds 
Antimicrobial compounds added to foods present 
another hurdle to limit growth of L. monocytogenes. 
Two risk assessments estimated that contaminated 
retail deli meats without growth inhibitors were 
responsible for about 70% of deaths from listeriosis 
(64;201). Various growth inhibitory substances have 
been tested and found to have some efficacy in 
inhibiting growth of L. monocytogenes. Some 
examples published in the past 5 years are listed below. 
• Nitrate and nitrite are traditionally used in cured 

meat products as effective antimicrobials. However, 
during the past decade there has been an increasing 
interest in natural and organic foods and the use of 
celery with a naturally high nitrate content as a 
natural curing agent. A variety of ingredients and 
processes have been developed and were recently 
reviewed (230). Naturally cured meat products have 
lower nitrite levels, and the addition of clean label 
antimicrobials can enhance the safety of these 
products. Challenge tests with ham (158;249), roast 
beef (158), and deli-style turkey breast (158) 
demonstrated that vinegar-lemon-cherry powder 
blend, cultured sugar-vinegar blend, and buffered 
vinegar delayed growth of L. monocytogenes by      
2–4 weeks. Antimicrobial effects were greatest on 
roast beef. 

• Organic acids (sorbate, benzoate, propionate) have 
been shown to inhibit Listeria in RTE meat and 
poultry products (89;90). Combinations of lactate 
and diacetate, incorporated into product or used as a 
surface treatment, also inhibit growth of L. mono-
cytogenes on deli meats (117;144;145;202;244). 
These compounds were more effective in low-fat 
formulations than in high-fat products (196). 

• Antimicrobial dips have been investigated as a 
means of ensuring safety of frankfurters during 
refrigerated storage. Organic acids, particularly 
lactate and diacetate, significantly inhibited growth 
of L. monocytogenes (143), and some plant-derived 
compounds (carvacrol, trans-cinnamaldehyde, β-
resorcylic acid) in combination with hydrogen 
peroxide were also inhibitory (259). Several anti-
microbials (citric acid, acidified sodium chlorite, 
trisodium phosphate) used as dips for chicken legs 
suppressed growth of L. monocytogenes (3). 
Trisodium phosphate as a dip was shown to 
significantly reduce populations of Salmonella but 
not of L. monocytogenes on catfish fillets (209) and 
fresh vegetables (248). 

• Non-sodium, inorganic chlorides and sulfates have 
been suggested as replacements for NaCl in order to 
reduce sodium levels in foods. Some challenge tests 
with cooked ham and white sauce found that 
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reductions in NaCl levels by about 30% did not 
result in increased growth of L. monocytogenes. 
Tests in broth, using equivalent molalities, found       
that calcium and magnesium chlorides exerted a 
greater antilisterial effect than NaCl, whereas KCl 
and magnesium sulfate had about the same effect as 
NaCl (217). 

• Bacteriocins: Nisin was reported to be an effective 
antilisterial compound on fresh, refrigerated vacuum-
packaged shrimp (272) and minced tuna and      
salmon roe (251). Bacteriocins from Pediococcus 
acidilactici inhibited L. monocytogenes on cold-
smoked salmon (170). A novel bacteriocin, amysin, 
reduced growth of L. monocytogenes on refrigerated, 
sliced bologna (119). Novel applications of 
bacteriocins in food preservation were recently 
reviewed (11). 

• Essential oils have a low solubility in water, making 
it difficult to evenly disperse them throughout foods. 
Thymol (231) and eugenol (232) were enclosed in 
nanocapsules and effectively mixed in milk and cider, 
inhibiting growth of L. monocytogenes. Peppermint 
oil in nanoemulsions exhibited prolonged anti-
bacterial activity against L. monocytogenes as 
compared to bulk peppermint oil (140). Oregano oil 
was found to act synergistically with nisin in 
inhibiting L. monocytogenes (257). Although several 
essential oils exhibited antilisterial effects on fresh-
cut vegetables, they adversely affected product 
appearance (229). 

• Cranberry powder at 3% significantly reduced 
growth of L. monocytogenes on hot dogs but, at this 
concentration, there were adverse organoleptic 
effects (279). Cranberry compounds in several 
column fractions more effectively inhibited L. mono-
cytogenes than E. coli (27;134). 

• Cinnamon bark extract, encapsulated in nano-
particles made of poly(D,L-lactide-co-glycolide), 
was successfully released in aqueous media to inhibit 
L. monocytogenes. These nanocapsules improved 
delivery of a hydrophobic antimicrobial (103). 

• Liquid smoke added to chicken-pork hot dogs at 
levels of 2.5 and 5% inhibited growth of L. mono-
cytogenes without significant detrimental effects on 
flavor or texture (172). 

• Mixtures and multiple ingredients have been 
tested for antimicrobial activity. Green tea extract 
and grape seed extract were effective as partial 
antilisterial replacements for lactate and diacetate in 
hot dogs (195). Apple skin extract, oregano, and 
olive juice powder were reported to have antilisterial 
effects (77). 

Competitive Cultures 
Lactic acid bacteria (LAB) are generally recognized     
as safe and are well known biopreservatives in some 
dairy and fermented foods. In experiments using          
a commercial preparation of three LAB strains 
(Lactiguard®) on frankfurters formulated with or 
without lactate/diacetate, LAB bacteria reduced growth 
of L. monocytogenes by 1–3 logs (127). A bacteriocin-
producing Lactobacillus decreased populations of 
L. monocytogenes by 2.4 log in a meat sausage model 
held at 22°C for 15 days (60). Lactic acid bacteria have 
also been used with modified atmosphere packaging to 
control L. monocytogenes on chicken legs and extend 
shelf life (160). 
 L. monocytogenes biofilms on surfaces and 
equipment in food processing and preparation areas 
have also been targeted with competitive exclusion 
bacteria. LAB strains were able to significantly reduce 
attachment of L. monocytogenes to stainless steel when 
added before or simultaneously with the pathogen. A 
concentration of 106 cfu LAB/ml was required to 
inhibit 103 cfu Listeria. LAB (108 cfu/ml) were also 
able to displace Listeria that had been preinoculated on 
stainless steel (179). Two species of probiotic bacteria 
(Lactobacillus) reduced numbers of L. monocytogenes 
biofilm cells by more than 3 log during competition, 
exclusion, and displacement assays (277). Experiments 
in a poultry processing plant found that a mixture of 
Lactococcus and Enterococcus that had previously 
been shown to inhibit Listeria on a variety of surfaces 
eliminated detectable Listeria in 5 of 6 floor drains 
after 4 treatments in a week. The drains remained 
Listeria-free for 13 weeks thereafter (283). 

Packaging 
Recent reports on smart or active packaging systems 
including antimicrobial substances discussed their 
applications for meat and poultry products and other 
foods: 
• A polylactic acid (PLA) film coated with 0.07% 

lauric arginate reduced L. monocytogenes levels on 
ham by 2–3 logs after 7 days of storage. Higher 
coating concentrations had a greater antimicrobial 
effect but reduced transparency of the film (253). 

• Antimicrobial packaging containing oxygen 
scavengers or carbon dioxide generators was 
found to reduce L. monocytogenes by 1.1 to 4.76 
logs, with greater reductions occurring at a higher 
temperature of 22°C. A packaging structure con-
taining an allyl isothiocyanate generator signifi-
cantly inhibited L. monocytogenes at 22°C but not at 
lower temperatures (43). 
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• A pp/EVOH film containing 5% oregano essential 
oil reduced spoilage flora and inhibited pathogens on 
packaged salads (175). 

• Incorporation of 4% green tea extract into a 
chitosan-coated plastic film inhibited growth of 
L. monocytogenes on ham during storage at 4 and 
20°C (269). 

• Chitosan coating combined with organic acids 
caused up to a 5.38 log reduction in L. mono-
cytogenes on RTE shrimp stored at 4°C for 16 days 
(139). 

• Essential oils of oregano and thyme added to 
LDPE films during extrusion (263) and to edible 
films used for packaging fish (113) inhibited growth 
of L. monocytogenes. 

• Two reviews discussed antimicrobial biopackaging 
for meat and poultry (46) and smart packaging of 
muscle-based food products (123). 

Modified atmosphere packaging can also reduce patho-
gen levels. Several types of packaging reduced 
L. monocytogenes populations by 1 log after 24 hours 
and by 1.5–2.4 logs after 72 hours on shelf-stable      
meat snacks (RTE turkey tenders and kippered beef 
steak strips) during storage at 23°C. Packaging treat-
ments included vacuum, nitrogen flushed with oxygen 
scavenger, heat sealed with oxygen scavenger, and heat 
sealed without oxygen scavenger (260). 

Cleaning and Sanitation 
Minimizing contamination of food- and nonfood-
contact surfaces in processing plants and retail 
environments is complicated by the ability of 
L. monocytogenes to form biofilms attached to surfaces. 
This protects the bacteria from many antimicrobial 
substances that may be lethal or inhibit growth. One 
approach to preventing biofilm formation is the 
modification of equipment and food contact surfaces to 
prevent attachment of bacteria. N-halamine modifi-
cation of stainless steel (13) and low-density 
polyethylene (14) significantly reduced survival of 
L. monocytogenes. Five to six layers of poly(acrylic 
acid) and branched polyethyleneimine were 
immobilized on the surfaces of these materials and 
provided a potentially rechargeable antimicrobial 
surface. In other tests, a coating of nitrogen-doped 
titanium dioxide on glass and stainless steel increased 
destruction of L. monocytogenes exposed to UV light. 
However, this treatment failed to achieve a 3-log 
reduction in cell numbers and would not be considered 
an effective disinfection method (213). 
 Data on efficacy of cleaning and sanitation 
methods utilizing different physical, chemical, or 
biological agents are summarized below. 

• Some tests found that three commercial sanitizers 
used at the manufacturers’ recommended levels were 
unable to completely destroy free L. monocytogenes 
cells, and even at concentrations of 4 times the 
recommended levels could not remove cells attached 
in biofilms (28). Other tests on microtiter plates in 
the lab found that commercial sanitizers tested at the 
manufacturers’ recommended levels were sufficient 
to kill planktonic cells but not all were effective 
against biofilms (49). Numerous strains of L. 
monocytogenes carry a large plasmid with genes 
encoding resistance to benzalkonium chloride (285). 
Use of the bacteriocin enterocin AS-48 was reported 
to enhance the antilisterial activity of several 
commercial sanitizers (26). 

• Neutral electrolyzed water (NEW) reduces 
populations of L. innocua on cutting boards 
(hardwood and bamboo) by about 4 logs, which is 
similar to the reduction achieved with sodium 
hypochlorite (167). NEW was reported to be an 
effective bacteriocide for free listerial cells at 
30 ppm for 0.5 min. However, listerial biofilms 
required 10 min treatment with 65 ppm NEW to 
achieve a similar reduction in L. monocytogenes 
populations (6). 

• EDTA at 0.1 mM when administered at the 
beginning of biofilm formation efficiently prevented 
biofilm formation without inhibiting planktonic cell 
growth. EDTA appears to inhibit cell-to-surface and 
cell-to-cell interactions, thereby preventing 
aggregation and attachment of bacteria to surfaces 
(41). 

• Chlorine dioxide at a concentration of 2 mg/L 
inactivated L. monocytogenes by 5 log after a 30-
minute treatment of a commercial meat slicer and an 
industrial hot dog peeler (256). 

• Infection of bacteria with specific viruses (phages) 
can cause their death and has been proposed as a 
sanitation method. Experiments with an L. mono-
cytogenes biofilm demonstrated that after 8 hours of 
treatment the biofilm began to break up and cell 
counts decreased. However, viable cells were still 
present after 48 hours. Phage treatment may be 
useful in combination with other sanitation 
procedures (168). 

• Biofilms are composed of living cells, extracellular 
polymeric substances, and nutrients that accumulate 
there. But the exact composition of listerial biofilms 
has not as yet been determined. Tests to determine 
whether enzymes could degrade biofilm components 
found that several proteases (papain, proteinase K, 
trypsin) were most effective in reducing listerial 
biofilms (271). 
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Figure 1. Food vehicles associated with outbreaks and cases reported by CDC, 1998–2011 (36).  
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Figure 2. Comparison of the decline in human listeriosis cases as compared to decline in percentage to RTE meat samples 
testing positive for Listeria (33;74).  
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Table 1. Selected outbreaks of listeriosis with known vehicles of infection.  

Year Food Cases Deaths Location Reference(s) 

2013 Cheese, soft 5 1 U.S. (4 states) (38) 
2012–13 Cheese, soft 26 3 Australia (242) 
2012 Cheese, ricotta salata 22 4 U.S. (14 states) (35) 
2012 Cheese, Latin-style, fresh 2 0 Spain (54) 
2011 Cantaloupe 147 33 U.S. (28 states) (34) 
2011 Cheese, Mexican-style, pasteurized 2 0 U.S.: New Jersey (36) 
2011 Cheese, blue-veined, unpasteurized 15 1 U.S. (multistate) (36) 
2011 Cheese, pasteurized 2 1 U.S.: Michigan (36) 
2011 Cheese, hard, pasteurized 12 2 Belgium (280) 
2011 Ham, sliced, packaged 11  Switzerland (111) 
2010 Hog head cheese (RTE meat) 8 2 U.S.: Louisiana (32) 
2010 Celery 10 5 U.S.: Texas (36) 
2010 Sushi 2 0 U.S.: Washington (36) 
2010 Cheese, Mexican-style, pasteurized 6 1 U.S. (multistate) (36) 
2010 Melons 9  Australia (190) 
2009–10 Cheese, acid curd (quargel) 34 8 Europe (227) 
2009 Beef 8 2 Denmark (239) 
2009 Cheese, Mexican-style, pasteurized 8 0 U.S. (multistate) (36) 
2009 Cheese, Mexican-style 18 0 U.S. (multistate) (36) 
2009 Cheese 45 9 Chile (278) 
2008–09 Cheese, Mexican-style (asadero), pasteurized 7  U.S. (5 states) (114) 
2008 Cheese, Brie, goat-milk 91 5 Chile (5) 
2008 Cheese, pasteurized 38  Canada (84) 
2008 RTE meats  57 23 Canada (22) 
2008 Pork, jellied 13 0 Austria (198) 
2007 Milk, pasteurized 5 3 U.S.: Massachusetts (31) 
2007 Cheese, Camembert, pasteurized 17 3 Norway (116) 
2006–07 Cheese, acid curd 189  Germany (125) 
2006–07 Unknown (hospital kitchen) 6 5 Brazil (156) 
2006–07 Sausage, RTE, scalded 16 5 Germany (276) 
2006 Cheese 75 12 Czech Republic (270) 
2005 Cold meats 3  Australia (189) 
2005 Cheese, soft (Tomme) 12 3 Switzerland (21) 
2003 Sandwich (cheese?) 5 0 U.K. (52) 
2002 Cheese, unpasteurized 18 0 Canada (85) 
2002 Turkey, deli meat 54 8 U.S. (8 states) (93) 
2001 Turkey, sliced 16 0 U.S.: California (78) 
2001 Cheese, raw-milk 48 0 Sweden (29) 
2001 Cheese 38 0 Japan (154) 
2000 Meat (ham, corned beef), RTE 31 0 New Zealand (237) 
2000 Cheese, Mexican-style, unpasteurized 13 0 U.S.: North Carolina (151) 
2000 Turkey, sliced 30 7 U.S. (11 states) (186) 
1999–2000 Meat, RTE paté (rillettes) 10 3 France (56) 
1999–2000 Pork tongue, jellied 32 5 France (56) 
1999–2000 Fish, vacuum-packed 10 4 Finland (99) 
1998–99 Frankfurters 108 21 U.S. (24 states) (159) 
1998–99 Butter 25 6 Finland (150) 
1998 Fish, cold-smoked trout 5 0 Finland (163) 
1994–95 Trout, cold-smoked or gravad 9 2 Sweden (65) 
1992 Pork tongue in jelly (RTE) 279 63 France (212) 

 
Corresponding author: M. Ellin Doyle, Ph.D., medoyle@wisc.edu Food Research Institute, UW–Madison, September 2013 
http://fri.wisc.edu/docs/pdf/FRI_Brief_FoodborneListeriosis_Sept2013.pdf Funded in part by the American Meat Institute Foundation 

 

mailto:medoyle@wisc.edu
http://fri.wisc.edu/docs/pdf/FRI_Brief_FoodborneListeriosis_Sept2013.pdf


16 FRI FOOD SAFETY REVIEW: Epidemiology of Foodborne Listeriosis 

Table 2. Results of recently published (2009–2013) surveillance studies for L. monocytogenes in food.  

Food Country # Samples % Positive Strains Concentrations Reference(s) 

Beef, ground Argentina 40 37%   (71) 
Beef, raw China 107 10.3% 1/2b, 4b  (274) 
Chicken breast, raw, skin on Canada 187 34% 1/2a  (48) 
Chicken breast, raw, skin off Canada 99 15% 1/2a  (48) 
Chicken breast, raw Malaysia  20%  <3 to16 MPN/g (91) 
Chicken, raw China 106 13.2% 1/2b, 4b  (274) 
Chicken, ground Canada 254 44.5%   (205) 
Chicken nuggets, frozen Canada 306 21.2%   (205) 
Turkey, ground Canada 251 35.5%   (205) 
Poultry products, RTE Germany 300 1% 1/2a <10 cfu/g (94% of samples) 

>100 cfu/g (1% of samples) 
(162) 

Pork, raw China 100 20% 1/2b, 4b  (274) 
Meats, cooked, sliced, RTE U.K. 1686 1.53%  <100 cfu/g (205) 
Pâtés, RTE U.K. 1648 0.32%  <100 cfu/g (205) 
Meat products, non-cooked, 

imported 
Japan 77 7.8%  <100 cfu/g (4 samples) 

100–400 cfu/g (2 samples) 
(184) 

Meat products, RTE Sweden 507 1.2%  <100 cfu/g (136) 
Meat, cooked Belgium 639 1.1%   (261) 
Meat, cooked Algeria 94 3.2%   (24) 
Meat, raw Iran 1107 2.4%   (207) 
Meat, vacuum-packed Spain 340 2.7% 1/2a, 1/2b, 1/2c, 4c 100–1000 cfu/g (2 samples (83) 
Meat, not vacuum packed Spain 241 8.5% 1/2a, 1/2b, 1/2c, 4c 100–1000 cfu/g (7 samples) (83) 
       
Milk, bulk tank Finland 183 5.5%  <1 to 30 cfu/ml (214) 
Cheese, soft, semi-soft Sweden 525 0.4%  >100 cfu/g (1 sample) (136) 
Cheese, soft Algeria 39 5.1%   (24) 
Cheese, Mexican-style, fresh Mexico 200 15%   (255) 
Cheese, imported Japan 70 0   (184) 
       
Fish, smoked Sweden 558 12%  >100 cfu/g (3 samples) (136) 
Fish, smoked Belgium 148 27.8%   (261) 
Fish, smoked Spain 142 25% 1/2a, 4c >1000 cfu/g (7 samples) (83) 
Fish, RTE Canada 40 20% 1/2a, 1/2b <100 cfu/g (132) 
Seafood, RTE Italy 38 23.7%  >100 cfu/g (3 samples) (81) 
Seafood, raw China 109 13.8% 1/2b, 4b  (274) 
Anchovy, raw Turkey 50  2%  1/2b, 4b  (238) 
Anchovy, salted Turkey 50  12%  1/2b, 4b  (238) 
Mussel, raw Turkey 50  2%  1/2b, 4b  (238) 
       
Vegetables (fresh, fresh-cut, 

and frozen) 
Spain 191 4.2% 

10.5%  
1/2a, 4b <100 cfu/g by culture 

4.97 log(10)/g by PCR 
(171) 

Salads, mayonnaise-based Belgium 1187 6.7%   (261) 
Egg shells, pooled samples Mexico 65 4.6%   (97) 
Bakery products, 
sandwiches 

Greece 479 8.7%   (129) 
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