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How to use the AMI  Spreadsheet
1. Select a D, Tref and z value for your product.

• Decide on the pathogen
• For multiple pathogens use the most thermally resistant• For multiple pathogens use the most thermally resistant  

(largest D close to finished internal temp
• Use a published value for a product that is closest in type 

and composition to your  situation
• Hierarchy of importance

1. Cured vs uncured
2. Fat level
3 Species3. Species
4. Whole vs ground vs emulsified

2. Enter data from values recorded in the process
U h ld i i h d• Use core temperature or the coldest point in the product  

• 20 points is sufficient IF enough of the data is in the region  
above 120F  (at least 10 data points)

• May or may not use the cooling part of the processMay or may not use the cooling part of the process

3. Samples are provided by AMI
24
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Oth l b f d i th h d t fOther values can be found in the handout references
- But be careful on converting units for z values (don’t 
incorporate the 32o offset between F and C) 
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Use the average 
or low value ofor low value of  
internal 
temperature
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Note: 
lethalitylethality 
continues
during 
cooling  
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SameSame 
process 
different 
pathogen  
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Another Web Site Based 
L th lit  C l l t  Lethality Calculator 

 Mullan, W.M.A. (2007). Calculator for determining the F value of a 
thermal process [On line] Available from:thermal process. [On-line]. Available from: 
http://www.dairyscience.info/index.php/thermal-processing/134-f-
value-thermal-process.html . Accessed: 13 July, 2012. 
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Another Web Site Based 
L th lit  C l l t  Lethality Calculator 

 Combase Predictor
 www.combase.cc

 Requires registration

 Limited temperature ranges, 
ll i Call in oC

 Time in hours
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Process lethality spreadsheet

Instructions for Using the AMI Process Lethality
Determination Spreadsheet

Objective

The purpose of the process lethality determination model is to provide processors with a

science-based validation tool that can be used to demonstrate the effectiveness of a specific

heat process to destroy a microorganism of concern.  Specifically, the interactive model allows

the user to input actual in-process data from a given cook cycle and determine if the process

achieves the required log reduction for the microorganism of concern.  The goal is to define or

map the heating and cooling profile of the product by observing the temperature characteristics

of the product during heating and cooling.  Microbial destruction may occur during a significant

portion of the heating and cooling process, not just at the minimum internal temperature.

Definitions

Thermal Death Time: This is the time in minutes, necessary to kill a given number of

organisms at a specified temperature.

T ref: The reference temperature used when establishing the D- and z-values.

D-Value: This indicates time in minutes at a constant temperature, that is necessary to

destroy 90% or 1 log of the organism present at a given reference temperature.  A D-

value at one temperature, along with a z-value, is used to define the heat resistance of a

microorganism.

z-Value: This is the temperature increase required to reduce the thermal death time by a

factor of 10.  It is the number of degrees between a 10-fold change (or log cycle) in a

microorganism’s heat resistance. The z-value is considered a constant for a given

microorganism strain in a given product.

F-Value: This is the process lethality or the time in minutes, at a specific temperature

required to destroy a certain number of viable cells.

You must provide the following

Identify microorganism and meat and/or poultry product of concern.

Provide at least 20 time/core product temperatures that represents the products heating

and cooling process.

Instructions:

1. By using the table that contains the lethality data from literature, we have selected the

microorganism and product of concern.  For example, let’s say our organism of concern

isL. monocytogenes, and our product is a hot dog.  Identify the corresponding T ref (144

F), z-value (10.8 F), and D-value (3.3 min) provided in the table. These values should be

obtained from your own companies challenge study data, from scientific literature, or

other reliable sources.  These values need to be relevant and appropriate for the type of

product and the organism of concern.  The table provides some example values from

scientific literature that apply to certain products, but you need to justify your choice or

provide more relevant values for your specific product and process.

2. Once the T ref (144 F), z-value (10.8 F), and D value (3.3 min) have been identified, enter

them into the appropriate labeled cells below the table that contains the lethality data from

literature.

(http://www.amif.org/)

About  ( /about )  R es earc h ( / r es earc h/ )  Fac t  Sheets  ( / fac t -

s heets / )  C onferenc es  ( /c onferenc es / )  New s  &  Media ( /new s / )

B log ( /b log/ )

Download spreadsheet

(/wp-

content/uploads/Process-
Lethality-Spreadsheet-August-
2010.xls)



3. The data table below these three values gives an example of what some

time/temperature data points may look like.  Time must be recorded in increasing minutes

(0, 10 min, 20 min, 30 min) as each temperature value is recorded.  The temperature

must be the core product temperature that identifies the coolest spot in the product and

the product should be in the coolest zone in the cooking chamber.  It is suggested that at

least 20 data points be entered into the data table.  The values that you enter should be a

time-temperature map of the product as it heats and cools.

4. Once the table has been completed, the F-value, or process lethality, will be calculated at

each data point and a cumulative F-value will be given as the very last number in the right

hand column of the data table (76.90 min).   This number adds up the lethality values for

each time interval and calculates an approximation of the area under the lethal rate

curve. This value will be referred to as the “computed cumulative F value” or the

“cumulative process lethality”.  In the given example, the calculation results in an

equivalent lethality at 144 F of 76.90 minutes. Clear the values in the first two columns

and enter your own continuous process time and core product temperature (°F) in the

appropriate columns.

5. After the data has been entered, a core temperature and a lethality curve are produced. 

The first graph shows a plot of the core product time/temperature relationship and the

second graph shows a plot of the data converted to lethal rates or the cumulative F-

value.  In the example, because 144°F is the selected reference temperature, the area

under the curve represents the total lethal effect of the process equivalent to 144 F.  In

this example, the lethality of the process is 76.90 minutes.  This represents an

“equivalent” time.

6. The total log reduction of the process is automatically determined by dividing the

cumulative F-value (76.90) by the D-value (3.3) that was entered into the appropriate

labeled cell.  The resulting value equals the total log reduction of the process (23.30).

7. By using these estimates, you or a process authority should determine if the process

meets regulatory requirements as safe. Additional documents, such as Appendix A

(http://www.fsis.usda.gov/oa/fr/95033F-a.htm), which discuss desired log reductions

should also be considered when evaluating a lethality process.

Summary

This spreadsheet is to be used as a tool to determine if a specific cooking process has provided

sufficient time and temperature to achieve a required log reduction for a given microorganism.  If

the appropriate log reduction is achieved for the process and organism of concern, the data and

graphs provided in the spreadsheet may be used as a component of the HACCP validation

materials.  If the cooking process does not result in the appropriate log reduction, the cooking

process needs to be re-evaluated and additional time and or temperature may need to be

applied to the process.

Please direct all questions to the AMIF staff at 202-587-4200.
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Compatibility

The process lethality determination spreadsheet model is compatible with either Microsoft Excel

version 5.0 (the version of Excel that is packaged with Microsoft Office 95) or Microsoft Excel 97
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