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0BINTRODUCTION 

Shiga toxin-producing E. coli (STEC) can cause 
devastating illness, particularly in children, by 
causing hemolytic uremic syndrome (HUS) leading 
to kidney failure. Outbreaks of illness caused by 
STEC have been epidemiologically related to contact 
with animals and consumption of meat and fresh pro-
duce. E. coli O157:H7 is the most notorious of the 
STEC strains causing approximately 73,500 cases in 
the U.S. each year. CDC estimates that non-O157 
STEC are responsible for about 37,000 cases of ill-
ness annually but relatively fewer cases of HUS com-
pared to O157:H7. Although many strains of non-
O157 STEC appear to be less virulent than E. coli 
O157:H7, a 2008 outbreak of STEC strain O111 in 
Oklahoma caused illness in at least 314 people, HUS 
in 17 cases, and one death (203). Other non-O157 
outbreaks in the U.S. have been traced to contami-
nated lake water, salad greens, and milk. 
Numerous E. coli strains are capable of producing 
one or both Shiga toxins (Stx1 and Stx2), but not all 
of them are important human pathogens. STEC 
strains have been divided into 5 seropathotypes 
(108;147):  

A, including the O157 strains that are common 
causes of outbreaks and HUS in most countries;  

B, non-O157 strains that cause occasional 
outbreaks but are fairly common isolates from 
sporadic cases and HUS (examples: O26:H11, 
O103:H2, O111:NM, O121:H19, O145:NM);  

C, non-O157 strains associated only with sporadic 
cases;  

D, strains associated with diarrhea, not more 
severe symptoms; and  

E, strains not associated with human disease.  
Stx2 is the more potent toxin, and those strains pro-
ducing this toxin are generally associated with more 
acute illness. Other virulence factors are also impor-
tant, including intimin, adhesions, enterohemolysin, 
and those involved in the type III secretion system 
that participates in the production of characteristic 
intestinal lesions (56;59).  

More than 200 virulent non-O157 serotypes have 
been isolated from outbreaks and sporadic cases of 
HUS and severe diarrhea in the U.S. and other coun-
tries. Serogroups O111, O103, and O26 are among 
the most frequently detected (35). The true incidence 
of non-O157 STEC infections is probably underesti-
mated because standard stool culture methods rou-
tinely used in many clinical laboratories do not detect 
these bacteria. Recently developed analytical meth-
ods for STEC strains detect Stx proteins or genes 
encoding these proteins (24;113). However, the pres-
ence of Stx or its genetic determinants in a sample 

does not necessarily mean that there are viable STEC 
bacterial cells. 

As with E. coli O157:H7, non-O157 STEC 
serotypes are often associated with cattle and other 
ruminants and surveys have demonstrated their pres-
ence in samples from cattle carcasses, retail beef, and 
raw milk (53;130;131;133). Cattle often harbor 
multiple serotypes, some of which appear to be less 
of a health risk to humans because they lack one or 
more important virulence factors. Nevertheless, 
because microbes can readily exchange genetic 
information (137), the presence of any STEC in food 
production environments is of concern. A recent 
review summarized data on the prevalence of STEC 
in the beef production chain (227). 

In order to minimize human infections with non-
O157 STEC, it is necessary to understand which 
serotypes are most virulent and all the ways in which 
people are exposed to these pathogens. A more com-
prehensive understanding of the epidemiology of 
infections caused by non-O157 STEC serotypes will 
lead to improved control methods to prevent illness 
and reduce economic losses to food producers and 
processors. This white paper will draw together epi-
demiological information from the scientific litera-
ture and government publications on outbreaks and 
discuss effectiveness of existing interventions for 
preventing exposure of humans to pathogenic non-
O157 STEC.  

1BEPIDEMIOLOGY OF NON-O157:H7 
STEC 

5BSurveillance and Pathogenicity 

According to published data, non-O157 STEC were 
first recognized as a possible cause of sporadic cases 
of HUS in 1975 in France, where hospital records 
reported that STEC serotype O103 was present in 
some patients (148). The earliest reported outbreak, 
caused by serotype O145:H–, occurred in Japan in 
1984. No vehicle of infection was determined for this 
outbreak (143). E. coli O157:H7 was first identified 
as a possible human pathogen at about the same time, 
in a California patient with bloody diarrhea in 1975, 
and was first associated with a foodborne (ground 
beef) outbreak of disease in 1982 (228;266). 

CDC estimates that about a third of STEC infec-
tions in the U.S. are caused by non-O157:H7 sero-
types. However, this is likely an underestimate 
because of the challenges in identification of non-
O157 strains. Although there are methods for identi-
fication of different serotypes, they are not widely 
available. In addition, many laboratories do not rou-



FRI FOOD SAFETY REVIEW: Non-O157:H7 Shiga Toxin-producing E. coli from Meat and Non-Meat Sources 3 
 

 

Corresponding author: M. Ellin Doyle, Ph.D., medoyle@wisc.edu Food Research Institute, UW–Madison, Dec. 2009/April 2010 
http://fri.wisc.edu/docs/pdf/FRI_Brief_NonO157STEC_4_10.pdf Funded in part by the American Meat Institute Foundation 

 

tinely screen diarrheal stools for Shiga toxins and 
may only attempt to isolate pathogens in cases of 
bloody diarrhea or if there is a suspected outbreak 
(268). It should be noted that there are atypical 
strains of serogroup O157 designated as O157:H– 
that can ferment sorbitol and may initially be pre-
sumed to be non-O157 strains. Isolates of serotype 
O157:H– often produce Shiga toxins and have been 
associated with cattle and with severe illness in chil-
dren (146;207). 

Some surveys in the U.S. and elsewhere indicate 
that non-O157 STEC may cause diarrhea as fre-
quently as E. coli O157:H7 even though they are less 
commonly identified in cases of severe illness, such 
as HUS. A 2006 review article (142) reported results 
from studies in 17 countries indicating that non-O157 
serotypes were responsible for 19–100% of STEC 
infections from which pathogens were isolated. These 
studies spanned a 10-year period and examined dif-
ferent patient groups (certain ages or geographical 
areas), so they do not necessarily reflect a greater 
prevalence of certain serotypes in different countries. 

In more recently published surveys, non-O157 
serotypes were reported to be significant causes of 
STEC infections (% = number of non-O157/total 
STEC identified): 
 80% in a nationwide survey in the Netherlands 

(256) 
 82% in a laboratory sentinel program in 

Germany (267) 
 74% in a national surveillance program in 

Denmark (197) 
 13% of HUS cases in France (72) 
 63% in an enhanced surveillance study in 

Manitoba (252) 
 28% in Ireland in 2008 (93) 
 42–61% in Australia during 2004–2006 (209) 
 24% (2007) and 35% (2008) in Japan (7;8) 

Data from summaries of notifiable diseases in 
the U.S. demonstrate an increasing percentage of 
cases of STEC infection associated with non-
O157:H7 serotypes. In 2002, only 5% of serotyped 
STEC isolates from human illness were identified as 
non-O157:H7 strains; in 2005, this had increased to 
16% of isolates (47). Although relative numbers of 
virulent non-O157:H7 strains may actually be in-
creasing, more frequent testing for Shiga toxins and 
different STEC serogroups undoubtedly explains 
much of the increase in non-O157:H7 isolates. In 
Idaho, an enhanced surveillance program targeting a 
“low” STEC incidence area of the state found that 
with more comprehensive laboratory analysis the 
reported non-O157 STEC incidence increased from 
<1 to 11 cases/yr/100,000 population and 56% of 

serotyped STEC isolates were non-O157 strains 
(171).  

During 2003–2005, the most common non-
O157:H7 strains identified in the U.S. were O26  
(19–25%), O103 (14–18%), O111 (13–17%), O45 
(5–13%), O121 (6–7%), and O145 (3.4–7.5%) (43; 
44;45). Even though a large number of different 
serogroups are identified in some enhanced surveil-
lance studies of human diarrheal cases, the most 
common non-O157 STEC strains reported are the six 
serogroups listed above. Nine to ten serogroups are 
identified yearly in Wisconsin; the most common 
serogroups during 2007–2009 were O26 (24–32%), 
O103 (21–34%), O111 (10–29%), O45 (2–17%), and 
O121 (2–9%) (data from J. Archer, Wisconsin Divi-
sion of Public Health). No cases of HUS have been 
associated with non-O157 STEC in Wisconsin in the 
past 3 years, but some strains of all the common 
serogroups have caused illness severe enough to 
require hospitalization of some patients (J. Archer). 
Virulence factors important for human infection are 
more commonly carried in these strains, resulting in 
more frequent detection. 

Virulence characteristics vary somewhat among 
STEC strains but all strains, by definition, produce 
Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2). 
Strains producing Stx2 cause more serious illness 
than those producing only Stx1. Several variants of 
these proteins have been described and some are 
more often detected in certain serotypes or certain 
host animals (59). Part of the toxin molecule binds to 
host cell receptors and facilitates transfer of the toxin 
into cells. Another toxin subunit has enzymatic 
activity and interferes with protein synthesis in cells 
and induces inflammatory responses. In addition to 
these toxins, virulent STEC often carry the locus of 
enterocyte effacement (LEE) whose genes code for 
proteins that form attaching and effacing lesions in 
the intestines of infected animals. LEE also encodes a 
type III secretion system to deliver virulence factors 
to intestinal enterocytes. Many pathogenic STEC also 
produce enterohemolysin. Several recent reviews 
discuss these virulence factors in more depth 
(21;41;108;139;142). 

Some virulence factors may confer advantages to 
STEC cells in the environment. Shiga toxins are also 
toxic to Tetrahymena, a common fresh-water proto-
zoan predator of bacteria. STEC may have a survival 
advantage when these predators are present (161). In 
addition to being an important virulence factor in 
some STEC infections, the serine protease, espP, also 
aids in attachment to lettuce leaves and may aid sur-
vival in the environment (154;239). 

Although non-O157 STEC are generally associ-
ated with less severe illness than E. coli O157:H7, 



4 FRI FOOD SAFETY REVIEW: Non-O157:H7 Shiga Toxin-producing E. coli from Meat and Non-Meat Sources 
 

 

Corresponding author: M. Ellin Doyle, Ph.D., medoyle@wisc.edu Food Research Institute, UW–Madison, Dec. 2009/April 2010 
http://fri.wisc.edu/docs/pdf/FRI_Brief_NonO157STEC_4_10.pdf Funded in part by the American Meat Institute Foundation 

 

this may change because bacteria readily exchange 
genetic material and are constantly gaining or losing 
genetic information, such as virulence genes. A 
genomic comparison of virulent STEC strains of 
serotypes O157, O26, O103, and O111 revealed that 
they contained a large number of prophages and 
transmissible integrative genetic elements containing 
virulence genes. These strains had distinct evolution-
ary histories and independently acquired the mobile 
genetic elements coding for virulence factors (202). 
STEC strains isolated from patients in the early 
stages of infection may differ from those isolated 
from fecal samples several days later, indicating that 
evolution of virulence characteristics occurs even 
during a matter of days within a host (179). Transfer 
of genes for Shiga toxins through bacteriophage 
transduction could potentially also occur in foods. 
However, some experiments examining this process 
in milk, ground beef, salads, and other foods found 
that cell numbers would need to be much greater than 
those normally observed in foods for efficient gene 
transfer (137). 

6BOutbreaks and Sporadic Cases 

Reports from public health surveillance studies in 
many (U.S.) states and from other countries indicate 
that sporadic cases of non-O157 STEC greatly out-
number outbreak cases (35;127;163;178; 197;229). 
This is also true for E. coli O157:H7. According to 
FoodNet data from 2005, only 23% of 473 confirmed 
cases of infection with E. coli O157:H7 were associ-
ated with outbreaks (48). Approximately 50 non-
O157 STEC cases have been identified annually in 
Wisconsin during 2007–2009 but these were nearly 
all sporadic cases (J. Archer). 

Outbreaks attributed to non-O157:H7 STEC 
have been reported from the U.S., Europe, Australia, 
and Japan. Data on 80 outbreaks, from 1984 to 2009, 
reported in the literature or government websites are 
presented in Table 1 (see p. 15). It is very likely that 
other outbreaks have occurred but were not 
recognized because of the difficulties in identifying 
and characterizing non-O157:H7 STEC serotypes. 
Information on some other outbreaks may have been 
published on foreign language websites or in 
inaccessible journals and were not included here. 

In the U.S., the earliest outbreak occurred in 
Ohio in 1990 among family members. A 2008 out-
break in Oklahoma, caused by serotype O111:NM, 
affected 341 patrons and workers at a particular res-
taurant. Despite an extensive investigation by public 
health authorities, targeting a variety of foods, food 
handlers and water sources, no specific source of the 
E. coli O111:NM was identified (203). 

Notable international outbreaks include the 1995 
mettwurst outbreak in Australia, caused by serotype 
O111:NM, which resulted in 23 cases of HUS among 
88 persons affected (38) and a more recent outbreak 
in Norway in 2006 caused by a virulent strain of 
serotype O103:H25, present in a particular kind of 
mutton sausage. There were 10 cases of HUS and 
1 death among the 18 cases that were recognized 
after an extensive epidemiological investigation 
(236). A Danish outbreak in 2007 due to serotype 
O26:H11, present in a different type of sausage, was 
much milder with no cases of HUS or death (75). The 
O103:H25 strain was reported to produce only Shiga 
toxin 2 whereas the O26:H11 strain produced only 
Shiga toxin 1. 

Another interesting aspect of the Danish out-
break was the epidemiological investigation. Initial 
interviews with parents of the affected children gen-
erated no useful hypotheses. Next, the investigators 
asked the parents where they shopped in the previous 
3 weeks and how much they had spent on food. With 
this information, they were able to retrieve from the 
stores’ computers exactly what was purchased and 
they identified one particular organic fermented sau-
sage, bought by several families, as the likely vehicle. 
The outbreak strain was isolated from the sausage 
and the sausage was recalled (75). 

Relative importance of different vehicles of in-
fection for outbreaks is depicted in Figures 1 and 2. 
In 15 outbreaks (18.8%), no vehicle was identified. 
Person–person contact was reported to be the cause 
of about 29% of outbreaks and 20% of cases. Many 
of these occurred in schools and day-care situations 
in Japan. Other outbreaks were traced to meat (9), 
dairy products (8), water, both drinking water and 
pool or lake water (8), produce (5), and other food 
(7). Several small outbreaks (5) occurred among 
visitors to farms and petting zoos. The “other food” 
category accounted for about 9% of outbreaks but 
27% of cases. This was due to two large outbreaks: 
the 2008 Oklahoma restaurant outbreak, with 341 
cases, and a 2004 outbreak associated with unpas-
teurized cider. Compared to outbreak data gathered 
for a previous white paper on E. coli O157:H7 (64), 
non-O157:H7 STEC strains are much less often asso-
ciated with meat, water, and produce as outbreak 
vehicles and much more often attributed to person-to-
person contact or unknown vehicles (Table 2). These 
differences are likely due, in part, to the better ana-
lytical methods available for E. coli O157:H7. E. coli 
O157:H7 is also more virulent than some non-
O157:H7 STEC strains and thus outbreaks are recog-
nized and investigated more rapidly and thoroughly. 
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Table 2. Comparison of the relative importance of vehicles 
associated with outbreaks of non-O157:H7 STEC and 
E. coli O157:H7. 

Vehicle 
non-O157:H7 

STEC 
E. coli 

O157:H7(64) 

Animal contact 6.2% 9.7% 
Water 10.0% 25.6% 
Person–person contact 28.8% 6.8% 
Dairy 10.0% 12.5% 
Meat 11.2% 24.6% 
Produce 6.2% 9.2% 
Other food 8.8% 5.8% 
Unknown 18.8% 5.8% 

 
 
 
 
 
Figure 1. Outbreaks of non-O157:H7 STEC associated 

with known vehicles. 
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Figure 2. Outbreak cases of non-O157:H7 STEC 

associated with known vehicles. 
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7BReservoirs of Non-O157:H7 STEC 

Understanding the epidemiology of non-O157:H7 
STEC serotypes requires a knowledge of where they 
live and grow in nature (their reservoir) and of how 
humans come into contact with them. Ruminants 
have been identified as the major reservoir of E. coli 
O157:H7 and also appear to be a reservoir of non-
O157:H7 STEC strains. STEC have been isolated 
from cattle, sheep, goats, and deer. STEC are occa-
sionally isolated from other wild and domestic ani-
mals but it is believed that, in many cases, they are 
present as transients that the animals acquired from 
foods or water contaminated by fecal material from 
ruminants. Nevertheless, some of these transient 
hosts may be vehicles of infection for humans. 

Non-O157:H7 STEC have been detected in 
numerous species of animals. Two non-O157:H7 
STEC outbreaks in Australia were traced to contact 
with non-ruminants: a 2002 outbreak at a petting zoo 
with pigs and alpacas infected with STEC serotype 
O26 (208) and a 2007 outbreak at an animal sanctu-
ary likely caused by koalas and/or kangaroos infected 
with serotype O55:H80 (110). Both a child with diar-
rhea and domestic pigeons in Germany were found to 
harbor the same STEC serotype, O128:H2 (246), and 
another child in Germany and her cat were found to 
be excreting identical strains of STEC O145:H– (36). 
A survey of wildlife meat in Germany found a num-
ber of non-O157:H7 STEC serotypes present in deer, 
wild boar, and wild rabbit meats. Some of these 
STEC were serotypes that have also been detected in 
cases of human illness (182). 

18BUCattle—the primary reservoir  
Cattle are probably the most important source of 
human infections. Of the outbreaks listed in Table 1, 
16 appear to be associated directly with cattle. These 
include two associated with beef, four with “meat,” 
and six with dairy products from cows. In addition 
there were four outbreaks associated with contact 
with animals at farms or petting zoos. Other out-
breaks associated with contaminated water and fresh 
produce may be indirectly associated with cattle. 

Wide ranges of prevalences of non-O157:H7 
STEC in feces from dairy (0.4–74%) and beef (2.1–
70.1%) cattle have been reported from various coun-
tries. A total of 193 STEC serotypes were reported 
from dairy and 261 serotypes from beef cattle. About 
12–17% of these serotypes have also been isolated 
from cases of human illness. Many of the apparently 
non-pathogenic strains appeared to be lacking one or 
more virulence factors (131;133). While it is difficult 
to compare results of all these studies because of 
variations in sampling and detection methods, they 
do indicate that cattle shed a variety of non-O157:H7 
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STEC serotypes, some of which are human patho-
gens. 

More recently published studies also demon-
strate a large number of serotypes shed by cattle: 26 
serotypes detected on organic and conventional dairy 
farms in Minnesota (51), at least 10 detected on beef 
carcasses in the Pacific northwest (53) and 31 sero-
groups detected in dairy cattle in Japan (157). These 
studies also illustrate an analytical issue that must be 
considered in analyzing published data. Estimates of 
prevalence were much higher from PCR or immuno-
assays detecting Shiga toxins or genes coding for 
these toxins (23–30%) than estimates obtained from 
isolation of STEC bacteria (6–12%). It is unclear 
whether the toxin assays are detecting proteins or 
DNA from viable or dead bacterial cells. 

Several studies have reported the STEC are shed 
more often by cattle during warm months (227). Most 
isolates of O26 and O111 in Korean cattle were 
detected during May–October (140). Non-O157:H7 
STEC were detected more often in Spring and 
Autumn in Midwestern U.S. beef processing plants 
(13). Seasonality may be related to ambient tempera-
tures, age of cattle, and/or type of feed or pasture 
consumed at different seasons. 

A likely source of infection for cattle is feed or 
water contaminated with feces of other infected ani-
mals. Research has documented the survival of STEC 
O26 for extended periods in manure: up to three 
months in manure heaps (85) and cow slurry (86) and 
up to a year in manure-amended soil depending on 
temperature and soil type (87). Persistence of these 
pathogens in an environment contaminated with 
manure is a concern not only for on-farm transmis-
sion and reinfection but also for environments such 
as county fairs and petting zoos where children may 
be exposed. 

Several on-farm studies have documented the 
acquisition of STEC by calves. Sera and colostrum of 
dams and sera of newborn calves were found to con-
tain Stx1-specific antibodies which may help protect 
newborn animals from infection. Antibody titers 
decreased rapidly during the first 6 weeks, and by 
8 weeks most calves were shedding STEC (88). 
Another study showed that very young calves do not 
shed STEC (52) and calves shed different STEC 
strains as they age (238). About 40% of calf infec-
tions were estimated to be acquired from other calves 
(170). Some STEC strains appear to be cleared within 
a day while other strains persist in calves for several 
days (270). Population dynamics of STEC shedding 
by beef calves from birth to about two years of age 
was monitored and modeled to understand changes 
that occurred over time (70). Results from these 

studies may suggest new approaches for on-farm 
control of STEC. 

19BUOther ruminants  
Sheep have been found to carry a great diversity 

of STEC but E. coli O157:H7 is infrequently isolated. 
Non-O157:H7 STEC have been detected in lambs 
and/or adult sheep from Australia (63), Brazil (259), 
India (26), Jordan (200), New Zealand (55), Norway 
(254), Spain (30;204;225), Switzerland (275;277), 
and the U.S. (135;144). In all of these surveys, multi-
ple STEC strains were detected but O157:H7, if pre-
sent, was a minor component of those identified. 
Several serotypes detected in sheep in different 
countries were similar, indicating that there may be 
some serotypes that have adapted to colonizing 
sheep. STEC serotypes that have been associated 
with human illness were detected in some studies but 
the majority of STEC strains present in sheep 
appeared to be of low virulence because they lacked 
some important virulence factors (intimin, hemolysin, 
Stx2). 

Data gathered at a commercial lamb processing 
plant in the U.S. revealed that the prevalences of 
E. coli O157:H7 on pelts, preevisceration carcasses, 
and postintervention carcasses were 12.8%, 1.6%, 
and 2.9% respectively. For non-O157:H7 serotypes, 
prevalences were 86.2%, 78.6%, and 81.6%, respec-
tively. A total of 69 different non-O157:H7 serotypes 
were identified. About 4% of these serotypes have 
previously been associated with severe human illness 
(144). 

Goats are another reservoir of STEC. Of 13 
caprine dairy herds surveyed in Ireland, STEC were 
isolated from milk filters from 3 farms. Serotypes 
O157 and O26 were each detected twice (193). A 
longitudinal study of two dairy goat farms in Spain 
documented chronic shedding of STEC by many 
adults on both farms but more sporadic shedding by 
kids. On one farm kids were carrying STEC bacteria 
within 1 week of age, while on the other farm it was 
four months before shedding began. Fewer adults 
were frequent shedders on the latter farm. Serotypes 
identified were primarily O33, O76, O126, O146, and 
O166. None of the isolates produced intimin and they 
appear to be adapted for colonizing the goat intestine 
(205). Non-O157:H7 STEC have also been detected 
in goats in Jordan (200;249), Bangladesh (138), and 
Vietnam (128). 

Buffaloes. Nearly one-quarter of the buffalo 
slaughtered at a facility in Bangladesh contained non-
O157:H7 STEC of several serogroups. Most strains 
produced Stx1 but many did not produce hemolysin 
or some other virulence factors. E. coli O157:H7 was 
isolated from 14.4% of the buffalo (138). A survey of 
98 farms in central Vietnam revealed that 70% of 
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farms had STEC-positive buffalo. However a minor-
ity (5%) of the serotypes identified were commonly 
associated with human illness (128).  

Guanaco (Lama guanicoe). STEC O26:H11 was 
isolated from a two-month old guanaco with severe 
diarrhea in Argentina (181). 

Deer and elk are present in significant numbers 
in some environments also used by cattle, sheep and 
goats, and their droppings may contaminate fresh 
produce in the field and surface waters. Cultures from 
fecal pellets from native Idaho ungulates revealed 
that about 19% were positive for Stx, which is about 
the same prevalence reported for cattle in that state 
(80;96). There have been numerous reports of E. coli 
O157:H7 in wild deer in the U.S. and other countries 
(119) and a few cases of human illness attributed to 
deer meat (152). Free-ranging wild sheep and deer in 
Spain were found to shed at least 11 non-O157:H7 
STEC serotypes, with O146 being the most com-
monly detected serogroup (230). Several captive 
ruminants in an Argentine zoo, including alpaca, 
antelope, deer, eland, sheep, and yak, shed non-
O157:H7 STEC (168). 

20BUOther animals 
Swine have been found, in several studies, to be 

infected with both E. coli O157:H7 and non-
O157:H7 STEC strains (22;82;120;141;150;151; 
199;235;276), whereas in other surveys only non-
O157:H7 STEC were detected (155;264). Although 
virulent STEC strains have been found in a few 
samples from swine, most researchers conclude that 
swine are not an important source for human 
infections because the STEC strains isolated from 
these animals often lack some important virulence 
genes and differ from strains usually isolated from 
cases of human illness (62;155;264;276).  

Horses do not appear to be an important reser-
voir for STEC. Only one of 400 fecal samples from 
horses in Germany tested positive for STEC (sero-
type O113:H21) and one of 100 horse meat samples 
tested was positive for STEC (serotype O87:H16) 
(218).  

Rabbits, both wild individuals and animals 
being raised commercially on farms, were reported to 
harbor non-O157:H7 enterohemorrhagic E. coli 
(91;164;231). 

Poultry have occasionally tested positive for 
E. coli O157:H7 (64), but so far there are no reports 
of non-O157:H7 STEC in poultry. 

A Cat and a 2-year-old German girl with bloody 
diarrhea were found to excrete the same STEC sero-
type, O145:H–. The cat had no symptoms but was 
found to excrete this STEC strain for several months 
and was apparently the source of the child’s original 
infection and/or reinfection (36). 

Dogs in Brazil were reported to harbor non-
O157:H7 STEC that caused diarrhea (58). 

Shellfish in contaminated waters are known to 
concentrate some pathogens such as Cryptosporid-
ium. E. coli is present in human sewage and the pos-
sibility exists that pathogenic strains such as STEC 
could be present in lakes, rivers or coastal waters 
contaminated by sanitary sewer overflow or runoff 
from fields containing fecal matter from domestic or 
wild animals. There have been reports of non-
O157:H7 STEC detected in shellfish collected from 
coastal areas of France (100) and India (160;175). 
However, it appears that STEC strains are not a sig-
nificant contaminant of shellfish. 

8BTransport Hosts 

Birds are a potential transport host for STEC 
because some wild birds harbor these bacteria and 
might spread them around a farm environment. There 
are a number of reports of non-O157:H7 STEC in 
both captive (ornamental, racing) pigeons (78;102; 
246) and in feral pigeons in the city or countryside 
(102;156;190). Stx2f, originally described from 
pigeon isolates (234), has been detected in a number 
of human diarrheal STEC isolates (221). Although a 
possible case of domestic pigeon-to-human trans-
mission of non-O157:H7 has been reported (246), a 
study in Colorado indicated that wild pigeons may 
not be a major route of transmission of STEC (214). 

Other wild birds may also carry non-O157:H7 
STEC. A starling on a Danish farm was found to har-
bor STEC serotype O2:H29 (198). STEC serotype 
O20 was detected in an Oriental turtle dove, and 
serotype O147 was detected in a barn swallow living 
near Tokyo Bay (156). Stx2 was detected in feces of 
30 wild bird species (of 99 species tested) in the UK, 
but strains were not serotyped (125).  

Rodents, including mice and rats, are also 
potential transport hosts for STEC. However, STEC 
have not been frequently reported from these 
animals. There is one report of STEC serotype 
O136:H12 from a rat on a cattle farm in Denmark 
(198). Among animals tested at an Argentine zoo, 
STEC serotype O146:H28 was detected in a cavy 
(related to guinea pigs) (168). 

Flies and beetles, collected on farms with ani-
mals shedding E. coli O157:H7, have been found to 
contain detectable levels of these bacteria (64). These 
insects frequent fecal deposits and may transfer these 
pathogens to foods, feed and water. STEC were 
recently isolated from flies collected at pig pens and 
in cattle barns but were not serotyped (90). 
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9BRoutes of Human Infection 

Ruminant fecal material is believed to be the ultimate 
source of a large percentage of human non-O157 
STEC infections. A study in Germany found that 
there was a positive association between illness 
caused by a number of non-O157 STEC serotypes 
and the density of cattle in an area. From data on over 
3000 STEC cases, analyses indicated that risk for 
infection increased by 68% per 100 additional 
cattle/km2. Increased risk varied for different sero-
types but was greatest for O111 (81). A similar asso-
ciation has been documented for E. coli O157:H7 
(255). Sporadic STEC cases have been traced to con-
tact with cattle on farms (118;196). 

Fecal material may contaminate meat during 
slaughter, may be washed or blown into lakes or 
drinking water sources, or may be deposited on fruits 
and vegetables by use of manure for fertilization or 
sewage-contaminated water for irrigation. Some 
animals, such as insects, birds, and rodents, may 
transport these bacteria from feces to drinking water 
or foods. In addition, non-O157 STEC may be inad-
vertently ingested by persons interacting or working 
with animals. Humans may therefore acquire infec-
tions through direct contact with an infected person 
or animal or their environment or through food, 
drinking water or surface water containing STEC-
contaminated fecal material from an animal or human 
(115).  

21BUDirect contact 
Numerous outbreaks of enteric zoonotic disease have 
been associated with animal exhibits at fairs, zoos 
and other venues. Cryptosporidium, Salmonella spp., 
and STEC are the pathogens most commonly identi-
fied in these outbreaks (119;167). Several non-O157 
STEC outbreaks among children who visited farms 
(1;245) or petting zoos (110;208) resulted from direct 
contact with animals and their environment followed 
by inadequate hand washing. E. coli O26:H11 and 
O111:H– can survive in cattle feces for 10–12 weeks 
at 15ºC (89), and STEC may persist on surfaces at 
farms and zoos for extended periods (even after ani-
mals have stopped shedding) if there is sufficient 
moisture and temperatures are not excessive (119). 
An outbreak of non-O157 STEC at a Minnesota farm 
day camp occurred in two consecutive years despite 
attempts to clean the premises and encourage hand 
washing (245). 

Contact with domestic animals has also been a 
route of STEC infection. A cat and a 2-year-old 
German girl with bloody diarrhea were both found to 
excrete O145:H–. Although the cat had no symptoms, 
it excreted this strain for several months and was 
apparently the source of the child’s original infection 
and/or reinfection (36). Another child with diarrhea 

and some pigeons harbored the same STEC O128 
strain (246). Pet rabbits have also been reported to 
harbor non-O157:H7 enterohemorrhagic E. coli (91). 

Person-to-person spread of non-O157 STEC has 
been the primary mode of infection in outbreaks in 
day-cares, schools and senior care facilities (7;8;35; 
54). In many other outbreaks, some cases who 
consumed contaminated food or water passed the 
infection directly to friends or others in their family. 
Although most people apparently stop shedding 
STEC bacteria within a week or so of recovering 
from illness, there are some people who continue to 
shed bacteria for weeks or months afterwards. A 
study in a German sausage factory over a 21-month 
period demonstrated that one healthy worker excreted 
non-O157 STEC intermittently for 7 weeks; another 
symptomless worker excreted STEC for nearly ten 
months (92). 

22BUContaminated food 
Beef, lamb, and mutton can be contaminated during 
slaughter and processing by exposure to feces or 
hides containing non-O157 STEC. A 2007 review 
stated that reported levels of non-O157 STEC in 
whole cattle carcasses, ground beef, retail beef cuts, 
and sausage were 1.7–58%, 2.4–30%, 11.4–49.6%, 
and 17–49.2%, respectively (129). Beef trim, which 
is ground to make hamburger, is believed to be an 
important source of STEC contamination in ground 
beef. A survey of boneless beef trim from Australia 
(220 samples), New Zealand (223 samples), Uruguay 
(256 samples), and the U.S. (487 samples) revealed 
that non-O157 STEC were present in 10% of the 
New Zealand samples and in about 30% of the other 
samples (31). Other surveys have reported the STEC 
prevalence to be 15% in ground meat in France 
(216), 1.5% in beef in Japan (113), 40% in ground 
lamb in Australia (14), 1% in horse meat in Germany 
(218), and 24% in buffalo meat in India (116) Proce-
dures for collecting samples and performing analyses 
differed among these studies, so results are not 
directly comparable. 

Milk from dairy cows, sheep, and goats may be 
contaminated with E. coli and other bacteria from the 
environment. A review in 2005 summarized numer-
ous surveys that detected STEC in milk and dairy 
products. Contamination with E. coli is generally 
low, and some of the STEC strains detected in raw 
milk have not been associated with human disease 
(133). Some non-O157 STEC may be more prevalent 
in milk than E. coli O157:H7. STEC strains have 
been shown to survive various steps in cheese-
making so that raw milk cheeses are potentially a 
vehicle for STEC infections (16). 

Most later surveys also report a relatively low 
prevalence of non-O157 STEC in raw milk but there 
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were some positive samples indicating the need for 
proper treatment of milk (173;174). STEC strains 
were isolated from 11% of bulk milk tank samples, 
4% of cheese curds, and 5% of cheese in Spain (226) 
and in 21% of raw milk samples in France (216). In a 
Swiss study, non-O157 STEC were isolated from 16 
of 744 raw milk hard and semi-hard cheeses (248). 
Analyses of 40 STEC strains isolated from raw milk 
and cheese in France found that most of the strains 
lacked some virulence factors found in isolates from 
human disease (220). Proper pasteurization kills E. 
coli; so outbreaks of STEC due to contaminated dairy 
products are usually associated with unpasteurized 
milk (2;4;61) but there has been an outbreak due to 
post-pasteurization contamination (189). 

Field and greenhouse experiments have demon-
strated that both E. coli O157:H7-contaminated 
manure and irrigation water may cause contamination 
of vegetables and this is probably true for non-O157 
STEC as well. Manure is a valuable fertilizer for 
crops but manure containing STEC may be a source 
of contamination for vegetables or fruits that are not 
normally cooked before eating. In one study, non-
O157 STEC were able to survive for 42 days in 
manure heaps that were turned and for 90 days in 
unturned heaps (85). STEC O26 survived for at least 
90 days in cow slurry (an effluent comprised of feces, 
urine, water, spilt feed, and bedding) (86). Serotype 
O26 was also detectable in manure-amended loam 
soil for more than 9 months at 4ºC and for more than 
6 months at 20ºC (87).  

Foods can also be contaminated with STEC by 
cross-contamination during food preparation and by 
infected workers who don’t practice good hygiene. 
There have been several outbreaks attributed to res-
taurant food. Cross-contamination in food prepara-
tion areas or infected food handlers might have con-
tributed to these outbreaks. An outbreak in a prison 
was traced to a food handler (46). 

23BUContaminated water 
Water used for drinking or recreation has been 
reported as the vehicle of infection for 7 outbreaks. 
One outbreak in 1988 in Czechoslovakia was associ-
ated with tap water. Several outbreaks occurred 
among children playing or swimming in pool or lake 
water. Other infected children may have been the 
source of bacteria for these cases. Other outbreaks 
were traced to water consumed at summer camps. 
Fecal material from domestic and/or wild ruminant 
animals may have contaminated lakes, rivers, and 
some “drinking water.” 

Surveys of some surface waters have detected stx 
genes in beach and stream water in a park in Penn-
sylvania (243), and in river water in Michigan and 
Indiana (67) and in India (223). The significance of 

these findings is unclear because the presence of stx 
genes was not correlated with numbers of viable 
bacteria present. Some strains of the non-O157 STEC 
serotypes O26 and O111 have been reported to sur-
vive in untreated well water for over 56 days at 10ºC. 
Cells die off more quickly at 22ºC but do persist in 
significant numbers for four weeks (265). 

2BINTERVENTIONS FOR CONTROL 
OF NON-O157:H7 STEC 
Research on prevention of STEC contamination of 
foods and water and strategies to kill or severely limit 
growth of any STEC that might be present in foods 
has concentrated primarily on E. coli O157:H7. In the 
following sections, data will be presented for non-
O157 STEC when available and summarized for 
E. coli O157:H7 or other E. coli. Susceptibility of 
non-O157 STEC to various intervention techniques is 
probably similar to that of other E. coli although 
there are known differences among strains in acid 
tolerance and sensitivity to some other agents. Some 
recent reviews discussing intervention techniques 
have been published (119;134;224;257). 

Effects of processing technologies on E. coli and 
other bacteria in meat were recently reviewed (10). 
Among the procedures discussed were irradiation, 
high hydrostatic pressure, natural antimicrobials, 
active packaging, and thermal treatments. Compari-
sons between E. coli O157:H7 and non-O157 STEC 
were not discussed, but conditions generally effective 
against E. coli were described. 

10BPre-Harvest Interventions 
24BUDietary Interventions 

Feed. Results of experiments published about 
ten years ago indicated that different diets fed to 
cattle may affect concentrations of E. coli O157:H7 
shed in feces. Feeding of high grain rations to feedlot 
cattle to increase feed efficiency causes some starch 
from the grains to escape fermentation in the rumen 
and pass to the hindgut where it is fermented by other 
bacteria. This can change the pH of the rumen and 
hindgut thereby affecting survival of some bacteria, 
such as STEC strains. A recent review paper dis-
cussed various experiments conducted since that time 
to determine whether dietary interventions could 
reduce numbers of STEC bacteria excreted by cattle 
(37). Subsequent experiments have shown that die-
tary differences do affect E. coli populations in cattle 
but the effects varied in magnitude and impact. Some 
studies suggest that the tannins and phenolic acids in 
forage may be the important components affecting 
shedding of STEC while other experiments, in which 
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barley and distillers grains were fed to cattle, demon-
strated an increase in shedding of E. coli O157:H7. 
Dietary experiments that tested for genes coding 
STEC virulence factors in cattle feces (which would 
measure effects on all STEC not just E. coli 
O157:H7) suggested that a diet with more roughage 
may reduce concentrations of STEC bacteria that 
cause human disease. However, the cattle in this 
study were excreting low levels of STEC, and further 
experiments are needed to determine the significance 
of these results (95). 

Probiotics, commensal bacteria fed to animals to 
reduce numbers of pathogens, have been suggested as 
a strategy to prevent growth of STEC in young rumi-
nants. In one experiment with calves, a three-strain 
mixture of non-pathogenic E. coli was fed to calves 
three days after challenge with one of three STEC 
serotypes. The probiotic E. coli mixture decreased 
fecal shedding of O157:H7 and O111:NM but did not 
affect shedding of O26:H11. At necropsy, all of the 
calves challenged with O26:H11 and four of twelve 
calves challenged with the other STEC still harbored 
viable STEC (253). E. coli strains used as probiotics 
may produce colicins that kill STEC strains (232). 
Other experiments have tested the effects of lactic 
acid bacteria on STEC survival. Some inhibition of 
STEC has been observed in tests in vitro (98;126). 
Some variability in practical results of tests with pro-
biotics may be due to different management prac-
tices, including the effects of subtherapeutic levels of 
antibiotics fed to livestock to enhance growth (119). 

Bacteriophages are viruses that can kill bacteria 
and have been proposed as potential control agents 
for STEC. In experiments with an artificial rumen 
system, phage D22, specific for E. coli O157:H7, 
eliminated these bacteria from the fermentor within 
four hours. However, in experiments with lambs, 
inoculated first with E. coli O157:H7 and then two 
days later with the phage, there was no decrease in 
numbers of E. coli O157:H7 shed. The phage did not 
persist in these animals (11). To avoid the problem of 
inactivation of phage in an animal’s digestive tract, 
another experiment tested the effects of two phages 
(one of which could also kill some non-O157 STEC 
strains); the phages and E. coli O157:H7 were 
applied directly to the rectoanal junction of steers. 
Phage therapy reduced the average number of E. coli 
O157:H7 detected in feces but did not eliminate these 
bacteria from most of the animals (240). Although 
bacteriophages have not yet emerged as a practical 
preharvest solution to STEC shedding by ruminants, 
some research continues to find other phages that 
might be more effective (262). 

Chlorate is metabolized by some bacteria, in-
cluding E. coli, to a toxic compound, chlorite. Feed-

ing chlorate to cattle in feed and water prior to 
slaughter can significantly reduce concentrations of 
E. coli O157:H7 and other E. coli in feces at slaugh-
ter. This is a potentially useful strategy for reducing 
contamination of meat during processing at slaughter 
facilities (6). Chlorate in drinking water is also effec-
tive in reducing E. coli populations (119). 

Drinking water may be contaminated by fecal 
material and is known to be a source of infection for 
cattle (241). Four chemical treatments of drinking 
water using lactic acid, acidic calcium sulfate and one 
of the following: benzoate, caprylic acid, butyric 
acid, chlorine dioxide resulted in >3 log reduction in 
numbers of E. coli O157:H7, O26:H11, and 
O111:NM in contaminated trough water. However, 
cattle consumed much less water when these chemi-
cals were present, so they should not be used con-
tinuously (274). 

25BUVaccines 
Some infected calves develop an immune response to 
STEC, and vaccines targeting some important STEC 
proteins may be useful in preventing the establish-
ment of STEC in calves. A recent review article 
mentioned 7 vaccines that have been described in the 
literature. There is not much information available on 
most of them because of proprietary considerations. 
Some have been tested in cattle but others have 
apparently been tested only in pigs or laboratory 
animals. Some vaccines, if demonstrated to be effec-
tive in cattle, may offer protection against non-O157 
strains if they induce antibodies to a common viru-
lence factor (257). Two recent articles described 
some new vaccines but they have not been tested in 
cattle as yet (105;169). Large-scale testing of a vac-
cine to reduce carriage of E. coli O157:H7 in cattle 
has begun in Colorado. A New York Times article on 
December 4, 2009 described the program and the 
obstacles faced by vaccine producers in getting 
approval for use of this product.  

11BProcessing Interventions 

Many interventions that aid in control of E. coli 
O157:H7 are likely to be effective for non-O157 
STEC also. Effectiveness of interventions for decon-
taminating meat was recently reviewed (10). Use of 
hot water and lactic acid washes and steam to clean 
carcasses effectively reduces contamination with 
E. coli O157:H7 (32;158). Intervention techniques to 
remove E. coli O157:H7 from the surface of beef 
carcasses were found to be similarly effective against 
O26:H11 and O111:H8 (57). 

Stress tolerance to heat, salt and acid has been 
observed in many STEC strains and should be con-
sidered when devising interventions in food process-
ing. Some non-O157 STEC are more susceptible or 
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resistant to stresses so that effectiveness of proce-
dures needs to be tested with more than one serotype. 
For example, E. coli O157:H7 was found to be more 
resistant to acid in a model stomach system than 
some non-O157 STEC serotypes (18). However, 
other tests in different media found E. coli O157:H7 
to be more sensitive to acid than other non-O157 
STEC (20;162;186). Acid-resistant non-O157 STEC 
survive longer in fermented raw sausage than non-
acid resistant strains (188). Both sodium lactate and 
sodium benzoate inhibit non-O157 STEC but the 
extent of inhibition is temperature dependent 
(117;166). 

STEC serotypes do not grow at refrigeration 
temperatures but can remain viable in food for ex-
tended periods in the cold (211), and E. coli O157:H7 
can survive at least for several days in meat and 
yogurt when frozen at –18ºC (104). Thermal treat-
ments can destroy STEC, but one study reported that 
STEC O26 was less heat sensitive than E. coli 
O157:H7 in minced beef heated at 55ºC (66). 

Effectiveness of sanitizers and disinfectants has 
been tested against STEC O111 and O26 (159;242; 
258). Several STEC serotypes tested were more 
resistant to desiccation on paper discs than Shigella 
and non-pathogenic E. coli. STEC also survived for 
months in chocolate (17;121). 

12BZoo and Farm Environmental Interventions 

CDC published in 2009 an updated version of rec-
ommended measures to prevent disease associated 
with animals in public settings. Million of human–
animal interactions occur annually in a variety of 
settings. Hand washing is the most important preven-
tive step for reducing disease transmission. In addi-
tion, CDC recommends prohibition of food in animal 
areas, education of visitors about disease risk and 
prevention, proper care and management of animals, 
and transition areas between animal and non-animal 
locations. The updated guidelines also discuss risks 
associated with baby poultry, reptiles, rodents, and 
aquatic animals (49). 

Composting of manure from animals shedding 
STEC can eliminate STEC when temperatures and 
the presence of other bacteria are optimized (97). 

3BANALYTICAL METHODS FOR 
DETECTING NON-O157:H7 STEC 

13BIntroduction 

E. coli O157:H7 can usually be readily identified in 
the laboratory because of its inability to ferment sor-
bitol or cleave the fluorogenic substrate 4-methylum-

belliferyl-B-d-glucuronide within 24 hours, which 
distinguishes it from other E. coli and most of the 
other bacteria in its environment. Nearly all E. coli 
O157:H7 produce Shiga-like toxins or harbor genes 
(stx) encoding the toxins so a culture-positive result 
is assumed to be positive for STEC. It should be 
noted that there are atypical strains of serogroup 
O157, designated as O157:H–, which can ferment 
sorbitol and may initially be presumed to be non-
O157 strains. Isolates of serotype O157:H– often 
produce Shiga toxins and have been associated with 
cattle and with severe illness in children (146;207). 

Detection and identification of non-O157:H7 
STEC serotypes in a timely fashion are more diffi-
cult. These strains do ferment sorbitol so they are not 
detectable on sorbitol MacConkey agar plates. Even 
though six non-O157 serogroups (O26, O45, O103, 
O111, O121, O145) cause most of the reported cases 
of non-O157 infection, over 150 STEC serotypes 
have been associated with illness. In addition, not all 
strains of these serogroups produce stx. Therefore, 
CDC recommended in a recent report that laborato-
ries simultaneously (1) test samples for the toxins 
with enzyme immunoassays or for stx with PCR 
methods and also (2) isolate and grow the bacteria in 
pure culture (99). If Shiga toxin is detected, then cul-
tures will be immediately available for serotyping 
and molecular characterization.  

Over 100 reports in scientific journals describe 
analytical methods for detection of non-O157 STEC. 
Immunoassays, PCR methods, and molecular analyti-
cal methods, developed in the past five years, are 
highlighted in the discussions below. Some useful 
descriptions of culture and enrichment methods are 
also included. Several comparisons of the accuracy of 
different methods and evaluations of commercially 
available detection methods will be discussed in the 
final section along with future research needs. 

14BEnrichment and Culture 

Isolation of non-O157:H7 serotypes from animals 
and foods containing large numbers of a variety of 
other bacteria is challenging because of the genetic 
and biochemical diversity of these STEC and their 
similarity to some non-pathogenic bacteria. In a 2006 
review article, enrichment/culture protocols, 
described in 132 papers published since 1997, were 
discussed (261). Many researchers used media con-
taining bile salts to inhibit non-Enterobacteriaceae 
and antibiotics, such as novobiocin, which inhibit 
primarily Gram-positive bacteria. Incubation times 
and temperatures varied. However, because of varia-
tions in experimental procedures, no definitive con-
clusions could be drawn about the relative effective-
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ness of the protocols for enrichment from different 
environmental samples. 

Other antibiotics (cefixime, vancomycin) and 
selective agents (tellurite) have been used to inhibit 
non-STEC bacteria (132) but there are reports that 
some non-O157:H7 STEC are sensitive to these 
agents (15;206). Other experiments demonstrated 
that growth of some non-O157:H7 STEC is inhibited 
by novobiocin in media and use of this antibiotic was 
not recommended (260). Universal preenrichment 
broth (which does not contain antibiotics), incubated 
at 42ºC, was reported to be more effective for detec-
tion of STEC O26 and O157 on beef, poultry, and 
radish sprouts than modified Escherichia coli broth 
with novobiocin (145). 

An acid enrichment procedure was recently 
reported to substantially decrease background flora in 
fecal specimens and enhance recovery of STEC 
strains (124). In a comparison of three enrichment 
protocols, a USDA procedure, an FDA procedure and 
acid enrichment, stx2 gene was detected in more 
samples of swine waste treated with acid than sam-
ples enriched by the other methods. All strains were 
non-O157:H7 STEC. The acid enrichment media was 
found to support the growth of all of 31 STEC strains 
tested while FDA media supported growth of 23 
strains and USDA medium supported growth of 5 
strains (101). 

15BIdentification of STEC Serotypes 
26BUCulture methods 
There are no completely reliable culture methods for 
identifying non-O157 STEC strains, although 
research indicates that some specific nutritional 
requirements or capabilities are associated with cer-
tain STEC serotypes. O26 strains that produce Shiga 
toxins are often unable to ferment rhamnose and can 
usually (but not always) be distinguished from non-
toxigenic strains on rhamnose MacConkey agar (77). 
A procedure using a consecutive series of differential 
and confirmation media was developed to distinguish 
4 STEC serotypes (O26, O103, O111, O145). Sam-
ples of artificially contaminated food and fecal sam-
ples were first enriched in media containing novobio-
cin, vancomycin, rifampicin, bile salts and tellurite. 
On the first differential media containing sorbose and 
sucrose, the non-O157 STEC strains produced differ-
ent colored colonies. These were then plated to media 
containing D-arabinose, D-raffinose, L-rhamnose, or 
dulcitol for confirmation. Isolation efficiency of all 
serotypes from different sources was 100%, 82.3%, 
88.5%, 65.9%, 64.3%, and 13.6% for STEC in raw 
milk, cheese made from pasteurized milk, cheese 
made from raw milk, ground beef, fermented meat, 
and cattle feces, respectively (219). 

27BUImmunoassays 
E. coli serotypes can be identified by immunoassays 
that target the O and H antigens on cell surfaces. 
Antisera for the most common non-O157 serotypes 
(O26, O45, O103, O111, O121, O145) are available 
commercially and can be used to identify many 
STEC isolates (99). Antibodies may be coated on 
immunomagnetic-separation beads and are poten-
tially useful for detecting cattle shedding a large 
number of STEC of certain serotypes, but these 
methods are not as reliable if STEC numbers are low 
(109). Immunomagnetic beads have also been used to 
detect O26 and O111 in ground beef (201). 

28BUPCR for serotype specific genes 
PCR (polymerase chain reaction) methods targeting 
DNA variants specific to different serotypes have 
been developed recently. These are often combined 
with PCR assays detecting genes coding for Shiga 
toxins or other virulence markers. Some assays target 
a gene associated with the O antigen such as the wzx 
gene in serotype O26 (172) and in serotype O103 
(215), while others target genes associated with both 
the O and H antigens as in methods described for 
O111:H8 (69) and O26:H11 (68). More recent multi-
plex methods detect specific genes present in O-anti-
gen gene clusters of four or five different O groups 
(23;83;84;187;217). These procedures can identify 
serotypes isolated from foods and fecal samples. 

16BShiga Toxin Detection 

29BUImmunoassays for toxins 
Six commercial immunoassays have been approved 
by FDA for the diagnosis of STEC infections (99): 
 Biostar OIA SHIGATOX, an optical 

immunoassay which does not distinguish 
between stx1 and stx2, can detect toxin in broths 
and fecal samples (251). (This will be withdrawn 
from market in 2009.)  

 Duopath Verotoxin test detects and differentiates 
Shiga toxins 1 and 2 in less than one hour in 
cultures of isolated cells (212). 

 Immunocard STAT!EHEC also differentiates 
Shiga toxins 1 and 2 in less than an hour in 
enrichment broths and cultures of isolated cells 
(99). 

 Premier EHEC does not distinguish between 
Stx1 and Stx2 and takes several hours to per-
form. It can detect toxins in stool samples and 
enrichment broths. Stx concentrations in fecal 
samples are typically very low, however, and 
detection is better in enrichment broths (153). 

 ProSpecT Shiga Toxin E. coli Microplate Assay 
does not differentiate Stx1 and Stx2 and takes 
several hours to perform. It can detect toxins in 
stool samples as well as enrichment broths. 
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Results are generally better in testing broth 
cultures (94). 

 VTEC Screen “Seiken” does differentiate Stx1 
and Stx2 and takes several hours to perform. It 
detects toxins in cultures of isolated cells (42). 

An evaluation of the Ridascreen Verotoxin Immuno-
assay published in 2007 noted that it could detect all 
known variants of Stx1 and Stx2 in routine screening 
of bacterial isolates (24). A more recent evaluation of 
this assay and the Premier EHEC and ProSpecT 
assays found that none of the tests could detect some 
Stx2 variants. The ProSpecT assay was about ten-
fold less sensitive than the other two assays. Premier 
EHEC assay may be useful in screening cattle (271). 

30BUNanoparticle assay for toxin proteins 
Stx bind to cell surface receptors containing terminal 
Gal-α1,4-Gal disaccharides. Glycopolydiacetylene 
nanoparticles, with Gal-α1,4-Gal disaccharides on 
their surfaces, were found to change color from pur-
ple to brown when bound to stx. These nanoparticles 
could distinguish between E. coli strains that did and 
did not produce Stx within 10 min (194). 

31BUPCR for toxin genes 
PCR assays for stx genes are generally designed for 
testing isolated cells from media or bacteria growing 
in enrichment broths rather than bacterial DNA 
extracted directly from foods or fecal specimens. 
PCR procedures have been developed and evaluated 
for identification of STEC from human stool samples 
(103), cattle feces (237), and foods (9;84). Some 
multiplex PCR assays are designed to screen for dif-
ferent types of diarrheagenic E. coli targeting viru-
lence genes found in enterohemorrhagic, enteroinva-
sive, enteropathogenic, enterotoxigenic, and entero-
aggregative strains (107). An evaluation of the 
GeneDisc assay, a multiplex assay targeting genes for 
stx, intimin, and DNA sequences characteristic of 
O26, O103, O111, and O157, found that it was very 
sensitive and capable of detecting 2 to 3 STEC colo-
nies in a lawn of 50,000 bacteria (25). A highly sensi-
tive immuno-PCR utilizing an immunoassay with 
antibody capture and DNA amplification detected as 
little as 10 pg purified stx2/ml (compared to 1 ng 
detected by a commercial immunoassay (273). 

32BULAMP (loop mediated isothermal amplification) assay 
for toxin genes 
This method for nucleic acid amplification differs 
from PCR in that 4 or 6 primers are used to amplify 
the target gene at a single temperature step. Amplifi-
cation products can be detected by turbidity because 
a by-product of the reactions, magnesium pyrophos-
phate, is insoluble. Turbidity caused by this precipi-
tate correlates with the amount of DNA synthesized 
(112). DNA was extracted from an enrichment from 

ground beef and tested with a LAMP assay targeting 
stx. Several STEC serotypes were detected (111). 

33BUComparison of different stx detection methods 
STEC strains have been detected in the past by de-
termining their cytotoxic effects on Vero (monkey) 
cells in culture. PCR assays for stx give results that 
are more than 90% in concordance with the Vero cell 
assay (272). 

17BSubtyping Methods 

Particularly in suspected outbreak situations, it is 
important to specifically identify the causative patho-
gen in order to trace pathways of contamination and 
determine the extent of outbreaks. There is great 
genetic diversity within STEC due to insertions and 
deletions in certain parts of the chromosome and 
genetic information carried by bacteriophages (202). 
PFGE (pulsed field gel electrophoresis) is a widely 
used technique that analyses patterns of chromosome 
fragments generated by restriction enzymes that 
cause breaks at certain DNA sequences. Such analy-
ses aided in detection of foods associated with an 
outbreak caused by STEC O103:H25 in fermented 
sausage in Norway in 2006 (236) and in tracing the 
contamination of ice cream associated with a Belgian 
outbreak (60). Other molecular analyses of multiple 
genetic loci have provided information on important 
virulence mechanisms and evolutionary relationships 
among various STEC strains (56;180;202;244;250). 

4BFUTURE RESEARCH NEEDS 
More recently published studies also demonstrate that 
a large number of E. coli serotypes may be present in 
animals: at least 10 detected on beef carcasses in the 
Pacific northwest (53) and 31 serogroups detected in 
dairy cattle in Japan (157). Estimates of prevalence 
are much higher from PCR or immunoassays detect-
ing Shiga toxins or genes coding for these toxins (23–
30%) than estimates obtained from isolation of STEC 
bacteria (6–12%) (157). Many of these STEC strains 
may not be virulent but it would be useful to know 
how readily these strains can exchange genetic in-
formation and acquire virulence factors. Although 
multiplex PCR methods are available for confirma-
tion of virulence genes in isolates, initial screening 
methods that segregate the diverse populations of 
E. coli, that are commonly encountered in clinical, 
environmental, and food samples, would facilitate 
detection and identification of seropathotypes. A 
combination of effective selective and differential 
plating media and molecular typing methods are 
needed to make accurate and comparable prevalence 
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determinations and environmentally track specific 
serotypes or strains. 

Many studies have documented the effects of 
various intervention techniques on E. coli O157:H7. 
Some interventions should also be tested on patho-
genic non-O157 serotypes. The need for these vali-
dations arises from the variability of growth and sur-
vival properties within a given species such as 
E. coli. With multiple serotypes comprising the non-
O157 STEC, there is greater diversity and a need to 
ascertain if certain serotypes, seropathotypes, or 
strains have growth or survival properties that differ 
significantly from E. coli O157:H7. Because of varia-
tions in resistance to environmental stresses, it is 
possible that the lethality of interventions and proc-
esses used to control E. coli O157:H7 will need to be 
evaluated with a select set of non-O157 STEC. 

To more completely define the epidemiology of 
non-O157 STEC, additional information on animal, 
environmental, and asymptomatic human hosts is 
needed. A more complete understanding of localiza-
tion within hosts as well as the growth, persistence 
and dissemination in the environment would be bene-
ficial. As with E. coli O157:H7, identifying where the 
pathogen is located in and on the animal can lead to 
more effective harvesting and processing strategies to 
reduce contamination of raw food products. Identifi-
cation of preferred environmental niches can lead to 
possible on-farm interventions and reduction of 
pathogen prevalence. Lastly, the incidence of person-
to-person transmission by non-O157 STEC requires 
further investigation to fully understand the role 
humans may play in the dissemination of this diverse 
group of pathogens.  
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Table 1. Reported outbreaks caused by non-O157 STEC. 
Date Strain Location Cases HUS Deaths Vehicle Reference(s) Other details 

1984 O145:H– Japan 100  0 Unknown (143) school 
1986 O111:H– Japan 22 1 1 Unknown (12) orphanage 
1988 O111:H2 Australia 2 2 0 Unknown (12) family 
1988 O26:H11 Czech Republic 5 5 1 Water, tap (27)  
1990 O111:NM US: Ohio 5 1 0 Unknown (12) family 
1991 O111:H– Japan 234   Unknown (12) primary school 
1992 O111:B4 France 26 10 0 Person–person (33;39) school 
1992 O111 Italy 9 9 1 Unknown (4;40)  
1992–
93 

O119:B14 France 4 4 1 Cheese, unpasteurized (4;61) bovine and caprine 
milk 

1994 O103 France 4 4 0 Cheese, raw caprine 
milk 

(4)  

1994 O104:H21 US: Montana 18 0 0 Milk, pasteurized (79;189) post-pasteurization 
contamination 

1995 O111:H– Spain 13   Water, drinking (29) summer camp 
1995 O111:NM Australia 88 23 1 Sausage (38;71;213) mettwurst 
1995–
96 

O157:H– Germany 28 28 3 Sausage (5)  

1996 O118:H2 Japan  131 0 0 Salads (114) junior high school 
1997 O26:H11 Japan 27 0 0 Watermelon; sprouts; 

spinach 
(122) nursery 

1999 O26 Ireland 10 0 0 Unknown (28) child care facility 
1999 O26:H11 Germany 3 3 0 Unknown (184) 3 children, small 

town 
1999 O111:H8 US: Texas 58 2 0 Unknown: salad and/or 

ice? 
(19;34) teenage campers 

1999 O121:H19 US: Connecticut 11 3 0 Water, lake  (177) swimming in lake 
2000 O26:H11 Germany 11 0 0 Beef (269) day care centers 
2000 O103 US: Washington 18 +  Punch (35)  
2000 O111 US: Utah 102   Water, drinking (165) also O157:H7 & C. 

jejuni 
2000–
01 

O51:H11, 
O111 

US: Minnesota 7 0 0 Calves, contact  (245) farm day camp,  
2 years; other 
enterics  

2001 O26:H11 Japan 11 0 0 Water, river (123) water used for wash-
ing 

2001 O26 US: Minnesota 4 0 0 Water, lake  (35)  
2001 O26:H– Austria 2 2 0 Milk, cow’s, raw (2)  
2001 O111 US: South Dakota 3 0 0 Person–person (35) day care centers 
2001 O111 US: Minnesota 2 2 1 Unknown (183)  
2002 O148 France 10 2 0 Mutton, lightly roasted (73) wedding reception 
2002 O26 Australia 5   Animal contact: pigs; 

alpacas 
(208) petting zoo 

2002 O157:H– Germany 38 38 4 Unknown (3)  
2003 O111 Australia 13 0 0 Person–person (54) old folks home 
2004 O86:H27 Australia 4 2 0 Cattle; person–person (191) 1st case from cattle 

farm 
2004 O111:NM  Japan 107 0 0 Meat (149) students traveling to 

Korea 
2004 O121:H19, 

O121:H7 
Japan 63 0 0 Animal exposure: cattle (1) children, farm visit 

2004 O111 US: New York 213   Cider, unpasteurized (263) also 
Cryptosporidium 

2005 O26 Italy 6 6 1 Milk products; buffalo (173)  
2005 O26 & 

O80 
France 16 16  Cheese from unpasteur-

ized cow’s milk 
(72)  

2005 O26:H11 Japan 12 0 0 Person–person (136) kindergarten, also 
norovirus 

2005 O45 US: New York 52 0 0 Food handler (46) prison 
2006 O26 US: Massachusetts 5  0 Strawberries; blueberries (50)  
2006 O26 Japan 16 0 0 Food, restaurant (185) served at one restau-

rant 
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Date Strain Location Cases HUS Deaths Vehicle Reference(s) Other details 
2006 O26:H11 Japan 33 0 0 Person–person (247) nursery school 
2006 O80:H– & 

O145 
Germany  59 1  Milk, unpasteurized (65) camp 

2006 O103:H2 Japan 12 0 0 Person–person (192) nursery school 
2006 O103:H25 Norway 18 10 1 Mutton; sausage (106;233;236)  
2006 O121:H19 US: Utah 69 4  Lettuce (176) restaurant 
2007 O26 & 

O145 
Belgium 13 5 0 Ice cream (60) contamination by 

food handlers ? 
2007 O26 US: Iowa 3   Water, pool (176)  
2007 O26:H– Japan 29   Person–person (7) nursery school 
2007 O26:H11 Denmark 20 0 0 Sausage (74;75)  
2007 O26:H11 Japan 19   Person–person (7) nursery school 
2007 O26:H11 Japan 19   Person–person (7) nursery school 
2007 O26:H11 Japan 31   Person–person (7) nursery school 
2007 O55:H80 Australia 3 1  Animal contact (110) kangaroos and 

koalas at an 
animal sanctuary; 
also infected with 
Salmonella 
Virchow 

2007 O103:H11 Japan 20   Unknown (7) old folks home 
2007 O111:H– Japan 8   Person–person (7) kindergarten 
2007 O111:H– Japan 28   Unknown (7) nursery school 
2007 O111:H– Japan 22   Person–person (7) nursery school 
2007 O111 US: Maine 8   Food (203)  
2007 O111 US: North Dakota 6   Person–person (203)  
2007 O111:NM US: North Dakota 23 0 0 Beef, ground (195) wedding reception 
2008 O111:NM US: Oklahoma 341 25 1 Food, restaurant (203) traced to 1 

restaurant 
2008 O26:H11 Japan 91   Food, high school (8) high school 
2008 O26:H11 Japan 27   Person–person (8) nursery school 
2008 O26:H11 Japan 52   Unknown (8) school excursion 
2008 O26:H11 Japan 8   Person–person (8) nursery school 
2008 O26:H11 Japan 84   Person–person (8) kindergarten 
2008 O26:H11 Japan 10   Person–person (8) nursery school 
2008 O26:H11 Japan 11   Person–person (8) nursery school 
2008 O111:H– Japan 67   Unknown (8) hospital 
2008 O111:H– Japan 13   Unknown (8)  
2008 O26:H– Japan 32   Person–person (8) nursery school 
2008 O26:H– Japan 14   Person–person (8) nursery school 
2008 O145:H– Japan 13   Person–person (8) nursery school 
2008 O111:H– Japan 61   Person–person (8) nursery school 
2008 O115:H 

NM 
Japan 2   Chicken or egg (76)  

2008 Unknown, 
not O157 

Australia 7   Water, drinking (210) camp 

2009 O121 Japan 31   Person–person (8) nursery school 
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