Applied Food Safety Laboratory · CLA Resource · Contact Us
UW-Madison Food Research Institute
Pictures of JHY Jae-Hyuk Yu

Core Executive Committee, Food Research Institute
Professor, Department of Bacteriology, UW-Madison
Faculty: Food Pathogens and Toxins Cluster

3155 Microbial Sciences Building
1550 Linden Drive
(608) 262-4696
jyu1@wisc.edu

Research Interests
Fungi and mycotoxins: molecular genetics and genomics of spore formation and mycotoxin biosynthesis in filamentous fungi
Department Webpage
http://www.bact.wisc.edu/faculty.php?init=JHY
Education
  • BS 1986, Seoul National University, Seoul, Korea; Microbiology
  • MS 1991, University of Wisconsin–Madison; Food Science 
  • PhD 1995, University of Wisconsin–Madison; Genetics 
  • Postdoc 1995–1998, Texas A&M University; Genetics
Research Focus

The genus Aspergillus encompasses the most common fungi in our environment. Many Aspergillus species are beneficial to humans, but they also include serious animal and plant pathogens. Moreover, most (if not all) Aspergillus species have the ability to produce one or more toxic secondary metabolites called mycotoxins. Fungal spores and mycotoxin contamination in foods and feeds occur frequently. Mycotoxins in food commodities can result in severe adverse health effect in humans and animals, and have a great impact on the US economy. All aspergilli produce asexual spores as the main means of dispersion and biosynthesis of certain mycotoxins is intimately related with fungal sporulation. The primary interest of my research program is to understand how fungi coordinate growth, sporulation and toxin biosynthesis employing the model fungus Aspergillus nidulans and the pathogniec fungus Aspergillus fumigatus. We showed that two antagonistic regulatory pathways govern vegetative growth and sporulation in Aspergillus. Vegetative growth is primarily mediated by a heterotrimeric G protein, which stimulates fungal growth while inhibiting asexual/sexual sporulation as well as production of certain mycotoxins. We found that the initiation, progression and completion of sporulation and mycotoxin biosynthesis are directed by various positive and negative regulators. We are further investigating the genetic, genomic and biochemical regulatory mechanisms governing production of fungal spores and mycotoxins with the long-term goal of eliminating the mold and mycotoxin problems in foods and feeds.

Current Research Projects
  • Regulatory mechanisms of sporulation and mycotoxin biosynthesis in Aspergillus species.
  • Molecular genetics and genomics of fungal growth, sporulation and mycotoxin production. 
  • Signal transduction in filamentous fungi.
  • Antibody regulation of Aspergillus growth, toxin production, and pathogenicity.
Program Affiliations
Outreach / Selected Recent Presentations
  • “Control of Sporulation of Molds.” Food Research Institute Annual Meeting, May 22, 2013, Madison, WI. 
  • “Molds and Yeasts 202: Strategies for Control in Food and Processing Facilities.” Food Research Institute Annual Meeting, May 22, 2012, Madison, WI. 
  • “Mold and Mycotoxin Basics"; Joint IFSH/FRI Mycotoxin Symposium, April 12, 2012, Chicago, IL. 
  • “Molds 101: Control of Mold / Yeasts in Foods and Beverages"; Food Research Institute Annual Meeting.” Food Research Institute Annual Meeting, May 17, 2011, Madison, WI. 
  • Raper Symposium, August 31, 2007, UW-Madison, “Regulation of Sporulation in Aspergillus”
  • Wonkwang University, Ik-San, Korea, August 3, 2007, “Novel Regulators of Sporulation in Aspergillus”
  • The 24th Fungal Genetics Conference, March 20–25, 2007, Pacific Grove, CA. Invited Plenary Lecture “Growth and Developmental Control in Aspergillus nidulans and A. fumigatus”
  • The 4th Aspergillus International meeting, March 18–20, 2007, Pacific Grove, CA, “GPCRs, RGSs and Velvet-like Proteins”

Publications

Ahmed YL, Gerke J, Park HS, Bayram Ö, Neumann P, Ni M, Dickmanns A, Kim SC, Yu JH, Braus GH, Ficner R. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol. 11(12):e1001750 (PMC3876986)
Yu JH, Alkhayyat F. 2013. Upstream regulation of mycotoxin biosynthesis. Adv. Appl. Microbiol. 86:251-78
Yang J, Yu JH, Rudi Strickler J, Chang WJ, Gunasekaran S. 2013. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens Bioelectron 47:530-8
Shin KS, Yu JH. 2013. Expression and Activity of Catalases Is Differentially Affected by GpaA (Ga) and FlbA (Regulator of G Protein Signaling) in Aspergillus fumigatus. Mycobiology 41(3):145-8 (PMC3817229)
Kong Q, Wang L, Liu Z, Kwon NJ, Kim SC, Yu JH. 2013. Gβ-like CpcB plays a crucial role for growth and development of Aspergillus nidulans and Aspergillus fumigatus. PLoS ONE 8(7):e70355 (PMC3728086)
Shin KS, Park HS, Kim YH, Yu JH. 2013. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus. J Proteomics 87:40-52
Park HS, Yu JH. 2012. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15(6):669-77
Kwon NJ, Park HS, Jung S, Kim SC, Yu JH. 2012. The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus. Eukaryotic Cell 11(11):1399-412 (PMC3486022)
Park HS, Bayram O, Braus GH, Kim SC, Yu JH. 2012. Characterization of the velvet regulators in Aspergillus fumigatus. Mol. Microbiol. 86(4):937-53
Szilágyi M, Anton F, Forgács K, Yu JH, Pócsi I, Emri T. 2012. Antifungal activity of extracellular hydrolases produced by autolysing Aspergillus nidulans cultures. J. Microbiol. 50(5):849-54
Jeong KC, Yu JH. 2012. Investigation of in vivo protein interactions in Aspergillus spores. Methods Mol. Biol. 944:251-7
Park HS, Yu JH. 2012. Multi-copy genetic screen in Aspergillus nidulans. Methods Mol. Biol. 944:183-90
Park HS, Ni M, Jeong KC, Kim YH, Yu JH. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS ONE 7(9):e45935 (PMC3457981)
Szilágyi M, Kwon NJ, Bakti F, M-Hamvas M, Jámbrik K, Park H, Pócsi I, Yu JH, Emri T. 2011. Extracellular proteinase formation in carbon starving Aspergillus nidulans cultures--physiological function and regulation. J. Basic Microbiol. 51(6):625-34
Tao L, Yu JH. 2011. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology (Reading, Engl.) 157(Pt 2):313-26
Kwon NJ, Shin KS, Yu JH. 2010. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet. Biol. 47(12):981-93
Sarikaya Bayram O, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6(12):e1001226 (PMC2996326)
Xiao P, Shin KS, Wang T, Yu JH. 2010. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production. Eukaryotic Cell 9(11):1711-23 (PMC2976297)
Szilágyi M, Kwon NJ, Dorogi C, Pócsi I, Yu JH, Emri T. 2010. The extracellular β-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans. J. Appl. Microbiol. 109(5):1498-508
Kwon NJ, Garzia A, Espeso EA, Ugalde U, Yu JH. 2010. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol. Microbiol. 77(5):1203-19
Tao L, Gao N, Chen S, Yu JH. 2010. The choC gene encoding a putative phospholipid methyltransferase is essential for growth and development in Aspergillus nidulans. Curr. Genet. 56(3):283-96
Shin KS, Kwon NJ, Yu JH. 2009. Gbetagamma-mediated growth and developmental control in Aspergillus fumigatus. Curr. Genet. 55(6):631-41
Pócsi I, Leiter E, Kwon NJ, Shin KS, Kwon GS, Pusztahelyi T, Emri T, Abuknesha RA, Price RG, Yu JH. 2009. Asexual sporulation signalling regulates autolysis of Aspergillus nidulans via modulating the chitinase ChiB production. J. Appl. Microbiol. 107(2):514-23
Shin KS, Kwon NJ, Kim YH, Park HS, Kwon GS, Yu JH. 2009. Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. Eukaryotic Cell 8(5):738-46 (PMC2681603)
Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(5882):1504-6
Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(5882):1504-6
Etxebeste O, Ni M, Garzia A, Kwon NJ, Fischer R, Yu JH, Espeso EA, Ugalde U. 2008. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryotic Cell 7(1):38-48 (PMC2224158)
Ni M, Yu JH. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE 2(10):e970 (PMC1978537)
Mah JH, Yu JH. 2006. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic Cell 5(10):1585-95 (PMC1595350)
Yu JH, Mah JH, Seo JA. 2006. Growth and developmental control in the model and pathogenic aspergilli. Eukaryotic Cell 5(10):1577-84 (PMC1595332)
Lafon A, Han KH, Seo JA, Yu JH, d'Enfert C. 2006. G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet. Biol. 43(7):490-502
Yu JH. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44(2):145-54
Seo JA, Guan Y, Yu JH. 2006. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172(3):1535-44 (PMC1456305)
Seo JA, Yu JH. 2006. The phosducin-like protein PhnA is required for Gbetagamma-mediated signaling for vegetative growth, developmental control, and toxin biosynthesis in Aspergillus nidulans. Eukaryotic Cell 5(2):400-10 (PMC1405901)
Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garc?a JL, Garc?a MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jim?nez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Lafton A. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438(7071):1151-6
Lafon A, Seo JA, Han KH, Yu JH, d'Enfert C. 2005. The heterotrimeric G-protein GanB(alpha)-SfaD(beta)-GpgA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171(1):71-80 (PMC1456537)
Seo JA, Han KH, Yu JH. 2005. Multiple roles of a heterotrimeric G-protein gamma-subunit in governing growth and development of Aspergillus nidulans. Genetics 171(1):81-9 (PMC1456535)
Ni M, Rierson S, Seo JA, Yu JH. 2005. The pkaB gene encoding the secondary protein kinase A catalytic subunit has a synthetic lethal interaction with pkaA and plays overlapping and opposite roles in Aspergillus nidulans. Eukaryotic Cell 4(8):1465-76 (PMC1214532)
Yu JH, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437-58
Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dom?nguez Y, Scazzocchio C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41(11):973-81
Chang PK, Yu J, Yu JH. 2004. aflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genet. Biol. 41(10):911-20
Seo JA, Han KH, Yu JH. 2004. The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol. Microbiol. 53(6):1611-23
Han KH, Seo JA, Yu JH. 2004. Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signalling. Mol. Microbiol. 53(2):529-40
Han KH, Seo JA, Yu JH. 2004. A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol. Microbiol. 51(5):1333-45
Seo JA, Guan Y, Yu JH. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165(3):1083-93 (PMC1462808)
Han KH, Han KY, Yu JH, Chae KS, Jahng KY, Han DM. 2001. The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41(2):299-309
Rosén S, Yu JH, Adams TH. 1999. The Aspergillus nidulans sfaD gene encodes a G protein beta subunit that is required for normal growth and repression of sporulation. EMBO J. 18(20):5592-600 (PMC1171627)
Yu JH, Ros?n S, Adams TH. 1999. Extragenic suppressors of loss-of-function mutations in the aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 151(1):97-105 (PMC1460443)
Adams TH, Yu JH. 1998. Coordinate control of secondary metabolite production and asexual sporulation in Aspergillus nidulans. Curr. Opin. Microbiol. 1(6):674-7
Adams TH, Wieser JK, Yu JH. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62(1):35-54 (PMC98905)
Wieser J, Yu JH, Adams TH. 1997. Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Curr. Genet. 32(3):218-24
Hicks JK, Yu JH, Keller NP, Adams TH. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16(16):4916-23 (PMC1170127)
Hicks JK, Yu JH, Keller NP, Adams TH. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16(16):4916-23 (PMC1170127)
Yu JH, Wieser J, Adams TH. 1996. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 15(19):5184-90 (PMC452262)
Yu JH, Butchko RA, Fernandes M, Keller NP, Leonard TJ, Adams TH. 1996. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr. Genet. 29(6):549-55
Yu JH, Butchko RA, Fernandes M, Keller NP, Leonard TJ, Adams TH. 1996. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr. Genet. 29(6):549-55
Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl. Acad. Sci. U.S.A. 93(4):1418-22 (PMC39953)
Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl. Acad. Sci. U.S.A. 93(4):1418-22 (PMC39953)
Yu JH, Leonard TJ. 1995. Sterigmatocystin biosynthesis in Aspergillus nidulans requires a novel type I polyketide synthase. J. Bacteriol. 177(16):4792-800 (PMC177246)
Yu JH, Chu FS. 1991. Immunochromatography of fusarochromanone mycotoxins. J Assoc Off Anal Chem 74(4):655-60